更新硬件SDK

This commit is contained in:
kerwincui
2023-03-04 03:44:56 +08:00
parent dcdf6e1b7c
commit e39d3d2f03
1900 changed files with 663153 additions and 0 deletions

View File

@@ -0,0 +1,284 @@
/*
* Copyright (c) 2022 OpenLuat & AirM2M
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "common_api.h"
#include "luat_rtos.h"
#include "luat_debug.h"
#include "luat_gpio.h"
#include "platform_define.h"
/*
移芯618平台上GPIO使用有如下注意事项
系统有几种工作模式ACTIVE、IDLE、SLEEP1、SLEEP2、HIBERNATE几种模式的区别参考example_pm的说明
1、IO分为normal IO和retention/AON IO两种
normal IO普通IO
在ACTIVE和IDLE工作模式下可以正常控制使用
在SLEEP1、SLEEP2、HIBERNATE工作模式下IO电源被强制关闭无法使用
retention/AON IO保持IO
在ACTIVE和IDLE工作模式下可以正常控制使用
在SLEEP1、SLEEP2、HIBERNATE工作模式下只能作为输出使用而且只能维持一种输出电平状态无法翻转控制
2、带AON功能的引脚做retention/AON IO功能或者其他外设功能使用时做软件配置上拉无效只能使用默认的上下拉
3、系统进入SLEEP1、SLEEP2、HIBERNATE休眠模式后除了软件运行代码调用唤醒接口可以主动唤醒外可以唤醒的外部事件有以下几种
(1). 配置为wakeup软件功能的wakeup pad引脚
(2). low power uart如果波特率为9600唤醒时数据也不会丢失其他波特率会丢失前面的部分数据
(3). low power usb
(4). power key
(5). charge pad
(6). rtc
详情参考example_pm的说明。
4、所有IO都支持中断
GPIO20、GPIO21、GPIO22三个IO支持同时配置为双边沿中断或者同时配置为高低电平中断
其余GPIO仅支持单边沿、单电平中断如果这些GPIO配置了双边沿或者双电平中断则会被系统自动调整配置为上升沿或者高电平中断
所以为了防止被系统自动调整配置其余的这些GPIO使用中断时仅配置为单边沿或者单电平中断。
*/
//本example基于EVB_Air780E_V1.5硬件
#define NET_LED_PIN HAL_GPIO_27
#define LCD_RST_PIN HAL_GPIO_1
#define LCD_RS_PIN HAL_GPIO_10
#define LCD_CS_PIN HAL_GPIO_8
#define DTR_PIN HAL_GPIO_22
#define LCD_DATA_PIN HAL_GPIO_9
#define DEMO_IRQ_PIN HAL_GPIO_20
//控制NET指示灯闪烁
static void task_gpio_output_run(void *param)
{
luat_gpio_cfg_t gpio_cfg;
luat_gpio_set_default_cfg(&gpio_cfg);
gpio_cfg.pin = NET_LED_PIN;
luat_gpio_open(&gpio_cfg);
while(1)
{
luat_gpio_set(NET_LED_PIN, 1);
LUAT_DEBUG_PRINT("net led on");
luat_rtos_task_sleep(1000);
luat_gpio_set(NET_LED_PIN, 0);
LUAT_DEBUG_PRINT("net led off");
luat_rtos_task_sleep(1000);
}
}
void task_gpio_output_init(void)
{
luat_rtos_task_handle task_gpio_output_handle;
luat_rtos_task_create(&task_gpio_output_handle, 4 * 1204, 50, "gpio_output_test", task_gpio_output_run, NULL, 32);
}
//LCD_RST引脚和NET引脚短接
//NET引脚通过task_gpio_output_run函数每隔一秒翻转一次输出高低电平
//LCD_RST引脚每隔一秒读取一次输入电平
void task_gpio_input_run(void)
{
luat_gpio_cfg_t gpio_cfg;
luat_gpio_set_default_cfg(&gpio_cfg);
gpio_cfg.pin = LCD_RST_PIN;
gpio_cfg.mode = LUAT_GPIO_INPUT;
luat_gpio_open(&gpio_cfg);
int level = 0;
while(1)
{
level = luat_gpio_get(LCD_RST_PIN);
LUAT_DEBUG_PRINT("get lcd rst pin %d",level);
luat_rtos_task_sleep(1000);
level = luat_gpio_get(LCD_RST_PIN);
LUAT_DEBUG_PRINT("get lcd rst pin %d",level);
luat_rtos_task_sleep(1000);
}
}
void task_gpio_input_init(void)
{
luat_rtos_task_handle task_gpio_input_handle;
luat_rtos_task_create(&task_gpio_input_handle, 4 * 1204, 50, "gpio_input_test", task_gpio_input_run, NULL, 32);
}
int single_interrupt_cnt = 0;
int both_interrupt_cnt = 0;
int gpio_irq(int pin, void* args)
{
if (pin == LCD_CS_PIN)
{
single_interrupt_cnt++;
}
else if (pin == DTR_PIN)
{
both_interrupt_cnt++;
}
//注意中断服务程序中的一行LUAT_DEBUG_PRINT日志如果通过Luatools查看最多仅支持64字节
LUAT_DEBUG_PRINT("pin:%d, level:%d,", pin, luat_gpio_get(pin));
}
//GPIO单边沿中断测试
void task_gpio_single_interrupt_run(void)
{
luat_gpio_cfg_t gpio_cfg;
//配置LCD_CS_PIN为中断引脚
luat_gpio_set_default_cfg(&gpio_cfg);
gpio_cfg.pin = LCD_CS_PIN;
gpio_cfg.mode = LUAT_GPIO_IRQ;
//LCD_CS_PIN引脚仅支持单边沿或者单电平类型的中断
//此处仅演示单边沿中断配置为LUAT_GPIO_RISING_IRQ、LUAT_GPIO_FALLING_IRQ
//不要配置为LUAT_GPIO_BOTH_IRQ因为配置为LUAT_GPIO_BOTH_IRQ会被系统自动修改为LUAT_GPIO_RISING_IRQ
gpio_cfg.irq_type = LUAT_GPIO_RISING_IRQ;
gpio_cfg.pull = LUAT_GPIO_PULLUP;
gpio_cfg.irq_cb = gpio_irq;
luat_gpio_open(&gpio_cfg);
//配置LCD_RS_PIN为输出引脚
luat_gpio_set_default_cfg(&gpio_cfg);
gpio_cfg.pin = LCD_RS_PIN;
luat_gpio_open(&gpio_cfg);
while(1)
{
luat_gpio_set(LCD_RS_PIN, 1);
LUAT_DEBUG_PRINT("LCD_RS output %d, LCD_CS input %d",luat_gpio_get(LCD_RS_PIN), luat_gpio_get(LCD_CS_PIN));
luat_rtos_task_sleep(1000);
LUAT_DEBUG_PRINT("after high input, number of single interrupts %d", single_interrupt_cnt);
luat_gpio_set(LCD_RS_PIN, 0);
LUAT_DEBUG_PRINT("LCD_RS output %d, LCD_CS input %d",luat_gpio_get(LCD_RS_PIN), luat_gpio_get(LCD_CS_PIN));
luat_rtos_task_sleep(1000);
LUAT_DEBUG_PRINT("after low input, number of single interrupts %d", single_interrupt_cnt);
}
}
void task_gpio_single_interrupt_init(void)
{
luat_rtos_task_handle task_gpio_single_interrupt_handle;
luat_rtos_task_create(&task_gpio_single_interrupt_handle, 4 * 1204, 50, "gpio_single_interrupt_test", task_gpio_single_interrupt_run, NULL, 32);
}
//GPIO双边沿中断测试
void task_gpio_both_interrupt_run(void)
{
luat_gpio_cfg_t gpio_cfg;
//配置DTR为中断引脚
luat_gpio_set_default_cfg(&gpio_cfg);
gpio_cfg.pin = DTR_PIN;
gpio_cfg.mode = LUAT_GPIO_IRQ;
//DTR_PIN引脚支持双边沿或者高低电平类型的中断
//此处仅演示双边沿中断可以配置为LUAT_GPIO_BOTH_IRQ、LUAT_GPIO_RISING_IRQ、LUAT_GPIO_FALLING_IRQ
gpio_cfg.irq_type = LUAT_GPIO_BOTH_IRQ;
gpio_cfg.pull = LUAT_GPIO_PULLUP;
gpio_cfg.irq_cb = gpio_irq;
luat_gpio_open(&gpio_cfg);
//配置LCD_DATA_PIN为输出引脚
luat_gpio_set_default_cfg(&gpio_cfg);
gpio_cfg.pin = LCD_DATA_PIN;
luat_gpio_open(&gpio_cfg);
while(1)
{
luat_gpio_set(LCD_DATA_PIN, 1);
LUAT_DEBUG_PRINT("LCD_DATA output %d, DTR input %d",luat_gpio_get(LCD_DATA_PIN), luat_gpio_get(DTR_PIN));
luat_rtos_task_sleep(1000);
LUAT_DEBUG_PRINT("after high input, number of both interrupts %d", both_interrupt_cnt);
luat_gpio_set(LCD_DATA_PIN, 0);
LUAT_DEBUG_PRINT("LCD_DATA output %d, DTR input %d",luat_gpio_get(LCD_DATA_PIN), luat_gpio_get(DTR_PIN));
luat_rtos_task_sleep(1000);
LUAT_DEBUG_PRINT("after low input, number of both interrupts %d", both_interrupt_cnt);
}
}
void task_gpio_both_interrupt_init(void)
{
luat_rtos_task_handle task_gpio_both_interrupt_handle;
luat_rtos_task_create(&task_gpio_both_interrupt_handle, 4 * 1204, 50, "gpio_both_interrupt_test", task_gpio_both_interrupt_run, NULL, 32);
}
int gpio_level_irq(void *data, void* args)
{
int pin = (int)data;
LUAT_DEBUG_PRINT("pin:%d, level:%d,", pin, luat_gpio_get(pin));
luat_gpio_ctrl(DEMO_IRQ_PIN, LUAT_GPIO_CMD_SET_IRQ_MODE, LUAT_GPIO_NO_IRQ);
}
//GPIO电平中断测试
void task_gpio_level_interrupt_run(void)
{
luat_gpio_cfg_t gpio_cfg;
//配置HAL_GPIO_20为中断引脚
luat_gpio_set_default_cfg(&gpio_cfg);
gpio_cfg.pin = DEMO_IRQ_PIN;
gpio_cfg.mode = LUAT_GPIO_IRQ;
//DTR_PIN引脚支持双边沿或者高低电平类型的中断
//所以此处可以配置为LUAT_GPIO_BOTH_IRQ、LUAT_GPIO_RISING_IRQ、LUAT_GPIO_FALLING_IRQ、LUAT_GPIO_HIGH_IRQ、LUAT_GPIO_LOW_IRQ、
gpio_cfg.irq_type = LUAT_GPIO_HIGH_IRQ;
gpio_cfg.pull = LUAT_GPIO_PULLUP;
gpio_cfg.irq_cb = gpio_level_irq;
luat_gpio_open(&gpio_cfg);
while(1)
{
if (!luat_gpio_get(DEMO_IRQ_PIN))
{
LUAT_DEBUG_PRINT("IO已经低电平可以再次开启高电平中断");
luat_gpio_ctrl(DEMO_IRQ_PIN, LUAT_GPIO_CMD_SET_IRQ_MODE, LUAT_GPIO_HIGH_IRQ);
}
luat_rtos_task_sleep(1000);
}
}
void task_gpio_level_interrupt_init(void)
{
luat_rtos_task_handle task_gpio_level_interrupt_handle;
luat_rtos_task_create(&task_gpio_level_interrupt_handle, 1024, 50, "gpio_level_interrupt_test", task_gpio_level_interrupt_run, NULL, 0);
}
INIT_TASK_EXPORT(task_gpio_output_init, "0");
INIT_TASK_EXPORT(task_gpio_input_init, "1");
INIT_TASK_EXPORT(task_gpio_single_interrupt_init, "2");
INIT_TASK_EXPORT(task_gpio_both_interrupt_init, "3");
INIT_TASK_EXPORT(task_gpio_level_interrupt_init, "4");