更新硬件SDK

This commit is contained in:
kerwincui
2023-03-04 03:44:56 +08:00
parent dcdf6e1b7c
commit e39d3d2f03
1900 changed files with 663153 additions and 0 deletions

View File

@@ -0,0 +1,349 @@
#ifndef __RTE_DEVICE_H
#define __RTE_DEVICE_H
#include "ec618.h"
/* Peripheral IO Mode Select, Must Configure First !!!
Note, when receiver works in DMA_MODE, interrupt is also enabled to transfer tailing bytes.
*/
#define POLLING_MODE 0x1
#define DMA_MODE 0x2
#define IRQ_MODE 0x3
#define UNILOG_MODE 0x4
#define RTE_UART0_TX_IO_MODE UNILOG_MODE
#define RTE_UART0_RX_IO_MODE IRQ_MODE
#define USART0_RX_TRIG_LVL (30)
#define RTE_UART1_TX_IO_MODE DMA_MODE
#define RTE_UART1_RX_IO_MODE DMA_MODE
#define RTE_UART2_TX_IO_MODE POLLING_MODE
#define RTE_UART2_RX_IO_MODE DMA_MODE
#define RTE_SPI0_IO_MODE POLLING_MODE
#define RTE_SPI1_IO_MODE POLLING_MODE
#define RTE_I2C0_IO_MODE POLLING_MODE
#define RTE_I2C1_IO_MODE POLLING_MODE
// I2C0 (Inter-integrated Circuit Interface) [Driver_I2C0]
// Configuration settings for Driver_I2C0 in component ::Drivers:I2C
#define RTE_I2C0 1
// { PAD_PIN28}, // 0 : gpio13 / 2 : I2C0 SCL
// { PAD_PIN27}, // 0 : gpio12 / 2 : I2C0 SDA
#define RTE_I2C0_SCL_BIT 28 // AUDIO use 28
#define RTE_I2C0_SCL_FUNC PAD_MUX_ALT2
#define RTE_I2C0_SDA_BIT 27 // AUDIO use 27
#define RTE_I2C0_SDA_FUNC PAD_MUX_ALT2
// DMA
// Tx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_I2C0_DMA_TX_EN 0
#define RTE_I2C0_DMA_TX_REQID DMA_REQUEST_I2C0_TX
// Rx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_I2C0_DMA_RX_EN 0
#define RTE_I2C0_DMA_RX_REQID DMA_REQUEST_I2C0_RX
// I2C1 (Inter-integrated Circuit Interface) [Driver_I2C1]
// Configuration settings for Driver_I2C1 in component ::Drivers:I2C
#define RTE_I2C1 1
// { PAD_PIN20}, // 0 : gpio5 / 2 : I2C1 SCL
// { PAD_PIN19}, // 0 : gpio4 / 2 : I2C1 SDA
#define RTE_I2C1_SCL_BIT 20
#define RTE_I2C1_SCL_FUNC PAD_MUX_ALT2
#define RTE_I2C1_SDA_BIT 19
#define RTE_I2C1_SDA_FUNC PAD_MUX_ALT2
// DMA
// Tx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_I2C1_DMA_TX_EN 1
#define RTE_I2C1_DMA_TX_REQID DMA_REQUEST_I2C1_TX
// Rx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_I2C1_DMA_RX_EN 1
#define RTE_I2C1_DMA_RX_REQID DMA_REQUEST_I2C1_RX
// UART0 (Universal asynchronous receiver transmitter) [Driver_USART0]
// Configuration settings for Driver_USART0 in component ::Drivers:USART
#define RTE_UART0_CTS_PIN_EN 0
#define RTE_UART0_RTS_PIN_EN 0
// { PAD_PIN27}, // 0 : gpio12 / 3 : UART0 RTSn
// { PAD_PIN28}, // 0 : gpio13 / 3 : UART0 CTSn
// { PAD_PIN29}, // 0 : gpio14 / 3 : UART0 RXD
// { PAD_PIN30}, // 0 : gpio15 / 3 : UART0 TXD
#define RTE_UART0_RTS_BIT 27
#define RTE_UART0_RTS_FUNC PAD_MUX_ALT3
#define RTE_UART0_CTS_BIT 28
#define RTE_UART0_CTS_FUNC PAD_MUX_ALT3
#define RTE_UART0_RX_BIT 29
#define RTE_UART0_RX_FUNC PAD_MUX_ALT3
#define RTE_UART0_TX_BIT 30
#define RTE_UART0_TX_FUNC PAD_MUX_ALT3
// DMA
// Tx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_UART0_DMA_TX_REQID DMA_REQUEST_USART0_TX
// Rx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_UART0_DMA_RX_REQID DMA_REQUEST_USART0_RX
// UART1 (Universal asynchronous receiver transmitter) [Driver_USART1]
// Configuration settings for Driver_USART1 in component ::Drivers:USART
#define RTE_UART1_CTS_PIN_EN 1
#define RTE_UART1_RTS_PIN_EN 1
// { PAD_PIN31}, // 0 : gpio16 / 1 : UART1 RTS
// { PAD_PIN32}, // 0 : gpio17 / 1 : UART1 CTS
// { PAD_PIN33}, // 0 : gpio18 / 1 : UART1 RXD
// { PAD_PIN34}, // 0 : gpio19 / 1 : UART1 TXD
#define RTE_UART1_RTS_BIT 31
#define RTE_UART1_RTS_FUNC PAD_MUX_ALT1
#define RTE_UART1_CTS_BIT 32
#define RTE_UART1_CTS_FUNC PAD_MUX_ALT1
#define RTE_UART1_RX_BIT 33
#define RTE_UART1_RX_FUNC PAD_MUX_ALT1
#define RTE_UART1_TX_BIT 34
#define RTE_UART1_TX_FUNC PAD_MUX_ALT1
// DMA
// Tx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_UART1_DMA_TX_REQID DMA_REQUEST_USART1_TX
// Rx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_UART1_DMA_RX_REQID DMA_REQUEST_USART1_RX
// UART2 (Universal asynchronous receiver transmitter) [Driver_USART2]
// Configuration settings for Driver_USART2 in component ::Drivers:USART
#define RTE_UART2_CTS_PIN_EN 0
#define RTE_UART2_RTS_PIN_EN 0
// { PAD_PIN25}, // 0 : gpio10 / 3 : UART2 RXD
// { PAD_PIN26}, // 0 : gpio11 / 3 : UART2 TXD
#define RTE_UART2_RX_BIT 25
#define RTE_UART2_RX_FUNC PAD_MUX_ALT3
#define RTE_UART2_TX_BIT 26
#define RTE_UART2_TX_FUNC PAD_MUX_ALT3
// DMA
// Tx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_UART2_DMA_TX_REQID DMA_REQUEST_USART2_TX
// Rx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_UART2_DMA_RX_REQID DMA_REQUEST_USART2_RX
// SPI0 (Serial Peripheral Interface) [Driver_SPI0]
// Configuration settings for Driver_SPI0 in component ::Drivers:SPI
#define RTE_SPI0 1
// { PAD_PIN21}, // 0 : gpio16 / 1 : UART1 RTS / 2 : SPI0 SSn
// { PAD_PIN22}, // 0 : gpio11 / 1 : UART1 CTS / 2 : SPI0 MOSI
// { PAD_PIN23}, // 0 : gpio14 / 1 : UART1 RXD / 2 : SPI0 MISO
// { PAD_PIN24}, // 0 : gpio15 / 1 : UART1 TXD / 2 : SPI0 SCLK
#define RTE_SPI0_SSN_BIT 21
#define RTE_SPI0_SSN_FUNC PAD_MUX_ALT2
#define RTE_SPI0_MOSI_BIT 22
#define RTE_SPI0_MOSI_FUNC PAD_MUX_ALT2
#define RTE_SPI0_MISO_BIT 23
#define RTE_SPI0_MISO_FUNC PAD_MUX_ALT2
#define RTE_SPI0_SCLK_BIT 24
#define RTE_SPI0_SCLK_FUNC PAD_MUX_ALT2
#define RTE_SPI0_SSN_GPIO_INSTANCE 1
#define RTE_SPI0_SSN_GPIO_INDEX 0
// DMA
// Tx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_SPI0_DMA_TX_REQID DMA_REQUEST_SPI0_TX
// Rx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_SPI0_DMA_RX_REQID DMA_REQUEST_SPI0_RX
// SPI1 (Serial Peripheral Interface) [Driver_SPI1]
// Configuration settings for Driver_SPI1 in component ::Drivers:SPI
#define RTE_SPI1 1
// { PAD_PIN13}, // 0 : gpio2 / 1 : UART0 RTSn / 3 : SPI1 SSn
// { PAD_PIN14}, // 0 : gpio3 / 1 : UART0 CTSn / 3 : SPI1 MOSI
// { PAD_PIN15}, // 0 : gpio4 / 1 : UART0 RXD / 3 : SPI1 MISO
// { PAD_PIN16}, // 0 : gpio5 / 1 : UART0 TXD / 3 : SPI1 SCLK
#define RTE_SPI1_SSN_BIT 13
#define RTE_SPI1_SSN_FUNC PAD_MUX_ALT3
#define RTE_SPI1_MOSI_BIT 14
#define RTE_SPI1_MOSI_FUNC PAD_MUX_ALT3
#define RTE_SPI1_MISO_BIT 15
#define RTE_SPI1_MISO_FUNC PAD_MUX_ALT3
#define RTE_SPI1_SCLK_BIT 16
#define RTE_SPI1_SCLK_FUNC PAD_MUX_ALT3
#define RTE_SPI1_SSN_GPIO_INSTANCE 0
#define RTE_SPI1_SSN_GPIO_INDEX 2
// DMA
// Tx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_SPI1_DMA_TX_REQID DMA_REQUEST_SPI1_TX
// Rx
// Channel <0=>0 <1=>1 <2=>2 <3=>3 <4=>4 <5=>5 <6=>6 <7=>7
#define RTE_SPI1_DMA_RX_REQID DMA_REQUEST_SPI1_RX
// PWM0 Controller [Driver_PWM0]
// Configuration settings for Driver_PWM0 in component ::Drivers:PWM
#define RTE_PWM 1
#define EFUSE_INIT_MODE POLLING_MODE
#define L2CTLS_INIT_MODE POLLING_MODE
#define FLASH_BARE_RW_MODE 1
#define RTE_UART0 1
#define RTE_UART1 1
#define RTE_UART2 1
/* to enable external thermal */
#define EXTERNAL_NTC_EXIST 0
#if (RTE_UART1 == 1)
#define UART1_DTR_PAD_INDEX 26 // GPIO11
#define UART1_DTR_GPIO_INSTANCE 0
#define UART1_DTR_GPIO_PIN 11
#define UART1_RI_PAD_INDEX 44 // AONIO 4 = GPIO24
#define UART1_RI_GPIO_INSTANCE 1
#define UART1_RI_GPIO_PIN 8
#define UART1_RI_PWM_INSTANCE 1
#define UART1_RI_PWM_CLK_ID FCLK_TIMER1
#define UART1_RI_PWM_CLK_SEL FCLK_TIMER1_SEL_26M
#define UART1_DCD_PAD_INDEX 45 // AONIO 5 = GPIO25
#define UART1_DCD_GPIO_INSTANCE 1
#define UART1_DCD_GPIO_PIN 9
#endif
#if (RTE_UART2 == 1)
#define UART2_DTR_PAD_INDEX 25 // GPIO10
#define UART2_DTR_GPIO_INSTANCE 0
#define UART2_DTR_GPIO_PIN 10
#define UART2_RI_PAD_INDEX 43 // AONIO 3 = GPIO23
#define UART2_RI_GPIO_INSTANCE 1
#define UART2_RI_GPIO_PIN 7
#define UART2_RI_PWM_INSTANCE 0
#define UART2_RI_PWM_CLK_ID FCLK_TIMER0
#define UART2_RI_PWM_CLK_SEL FCLK_TIMER0_SEL_26M
#define UART2_DCD_PAD_INDEX 47 // AONIO 7 = GPIO27
#define UART2_DCD_GPIO_INSTANCE 1
#define UART2_DCD_GPIO_PIN 11
#endif
#define NETLIGHT_PAD_INDEX 46 // AONIO 6 = GPIO26
#define NETLIGHT_PAD_ALT_FUNC PAD_MUX_ALT5
#define NETLIGHT_PWM_INSTANCE 3
//USIM1 OPTION1
#define USIM1_URST_OP1_PAD_INDEX 19 // GPIO4
#define USIM1_URST_OP1_GPIO_INSTANCE 0
#define USIM1_URST_OP1_GPIO_PIN 4
#define USIM1_UCLK_OP1_PAD_INDEX 20 // GPIO5
#define USIM1_UCLK_OP1_GPIO_INSTANCE 0
#define USIM1_UCLK_OP1_GPIO_PIN 5
#define USIM1_UIO_OP1_PAD_INDEX 21 // GPIO6
#define USIM1_UIO_OP1_GPIO_INSTANCE 0
#define USIM1_UIO_OP1_GPIO_PIN 6
//USIM1 OPTION2
#define USIM1_UIO_OP2_PAD_INDEX 27 // GPIO12
#define USIM1_UIO_OP2_GPIO_INSTANCE 0
#define USIM1_UIO_OP2_GPIO_PIN 12
#define USIM1_URST_OP2_PAD_INDEX 28 // GPIO13
#define USIM1_URST_OP2_GPIO_INSTANCE 0
#define USIM1_URST_OP2_GPIO_PIN 13
#define USIM1_UCLK_OP2_PAD_INDEX 29 // GPIO14
#define USIM1_UCLK_OP2_GPIO_INSTANCE 0
#define USIM1_UCLK_OP2_GPIO_PIN 14
//USIM1 clock latched by AONIO, for example, use AONIO-6 test on EVB
#define AONIO_6_PAD_INDEX 46 // AONIO 6 = GPIO26
#define AONIO_6_GPIO_INSTANCE 1
#define AONIO_6_GPIO_PIN 10
#define RTE_CSPI0 0
#define RTE_CSPI0_MCLK_PAD_ADDR 39
#define RTE_CSPI0_MCLK_FUNC PAD_MUX_ALT1
#define RTE_CSPI0_PCLK_PAD_ADDR 35
#define RTE_CSPI0_PCLK_FUNC PAD_MUX_ALT1
#define RTE_CSPI0_CS_PAD_ADDR 36
#define RTE_CSPI0_CS_FUNC PAD_MUX_ALT1
#define RTE_CSPI0_SDO0_PAD_ADDR 37
#define RTE_CSPI0_SDO0_FUNC PAD_MUX_ALT1
#define RTE_CSPI0_SDO1_PAD_ADDR 38
#define RTE_CSPI0_SDO1_FUNC PAD_MUX_ALT1
// DMA CSPI0 Request ID
#define RTE_CSPI0_DMA_RX_REQID DMA_REQUEST_I2S0_RX
// CSPI1 Configuration
#define RTE_CSPI1 1
#define RTE_CSPI1_MCLK_PAD_ADDR 18
#define RTE_CSPI1_MCLK_FUNC PAD_MUX_ALT1
#define RTE_CSPI1_PCLK_PAD_ADDR 19
#define RTE_CSPI1_PCLK_FUNC PAD_MUX_ALT1
#define RTE_CSPI1_CS_PAD_ADDR 20
#define RTE_CSPI1_CS_FUNC PAD_MUX_ALT1
#define RTE_CSPI1_SDO0_PAD_ADDR 21
#define RTE_CSPI1_SDO0_FUNC PAD_MUX_ALT1
#define RTE_CSPI1_SDO1_PAD_ADDR 22
#define RTE_CSPI1_SDO1_FUNC PAD_MUX_ALT1
// DMA CSPI1 Request ID
#define RTE_CSPI1_DMA_RX_REQID DMA_REQUEST_I2S1_RX
#endif /* __RTE_DEVICE_H */

View File

@@ -0,0 +1,39 @@
#ifndef __AUDIO_EXTERN_H__
#define __AUDIO_EXTERN_H__
extern const unsigned char audio0[];
extern const unsigned char audio1[];
extern const unsigned char audio10[];
extern const unsigned char audio100[];
extern const unsigned char audio1000[];
extern const unsigned char audio10000[];
extern const unsigned char audio2[];
extern const unsigned char audio3[];
extern const unsigned char audio4[];
extern const unsigned char audio5[];
extern const unsigned char audio6[];
extern const unsigned char audio7[];
extern const unsigned char audio8[];
extern const unsigned char audio9[];
extern const unsigned char audiodot[];
extern const unsigned char audioshoukuanchenggong[];
extern const unsigned char audioyuan[];
extern const unsigned char audiozhifubao[];
extern const int audio0Size;
extern const int audio1Size;
extern const int audio10Size;
extern const int audio100Size;
extern const int audio1000Size;
extern const int audio10000Size;
extern const int audio2Size;
extern const int audio3Size;
extern const int audio4Size;
extern const int audio5Size;
extern const int audio6Size;
extern const int audio7Size;
extern const int audio8Size;
extern const int audio9Size;
extern const int audiodotSize;
extern const int audioshoukuanchenggongSize;
extern const int audioyuanSize;
extern const int audiozhifubaoSize;
#endif

View File

@@ -0,0 +1,40 @@
#ifndef __AUDIO_TASK__
#define __AUDIO_TASK__
#include "queue.h"
#include "audio_play.h"
typedef struct
{
uint32_t priority;
uint32_t playType;
union
{
struct
{
char *data;
uint8_t len;
} tts;
struct
{
audio_play_info_t *info;
uint8_t count;
} file;
} message;
void * userParam;
} audioQueueData;
typedef enum
{
MONEY_PLAY = 0,
PAD_PLAY,
SYS_PLAY
} AUDIO_PLAY_PRIORITY;
typedef enum
{
TTS_PLAY = 0,
FILE_PLAY,
} AUDIO_PLAY_TYPE;
void audio_task_init(void);
#endif

View File

@@ -0,0 +1,5 @@
#ifndef __CHARGE_MAN_H
#define __CHARGE_MAN_H
uint16_t getVbat();
void charge_init(void);
#endif

View File

@@ -0,0 +1,4 @@
#ifndef __FDB_INIT_H
#define __FDB_INIT_H
void fdb_init(void);
#endif

View File

@@ -0,0 +1,4 @@
#ifndef __KEY_INIT_H
#define __KEY_INIT_H
void key_pad_init(void);
#endif

View File

@@ -0,0 +1,17 @@
#ifndef __LED_TASK_H_
#define __LED_TASK_H_
#define LED_GREEN_PAD 44
#define LED_GREEN_PORT 1
#define LED_GREEN_PIN 8
#define LED_RED_PAD 47
#define LED_RED_PORT 1
#define LED_RED_PIN 11
#define LED_BLUE_PAD 41
#define LED_BLUE_PORT 1
#define LED_BLUE_PIN 7
void led_task_init(void);
#endif

View File

@@ -0,0 +1,5 @@
#ifndef __MQTT_STATUS_H_
#define __MQTT_STATUS_H_
bool getNetStatus();
bool getServerStatus();
#endif

View File

@@ -0,0 +1,238 @@
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "common_api.h"
#include "audio_task.h"
#include "timers.h"
#include "portmacro.h"
#include "audio_play.h"
#include "ivTTS.h"
#include "slpman.h"
#include "gpio.h"
#include "pad.h"
#define WAIT_PLAY_FLAG (0x1)
#include "common_api.h"
#include "bsp_custom.h"
#include "ostask.h"
#include DEBUG_LOG_HEADER_FILE
#include "plat_config.h"
#include "audio_play.h"
#include "audio_ll_drv.h"
#include "FreeRTOS.h"
#include "timers.h"
#include "slpman.h"
#include "osasys.h"
#include "version.h"
#include "ivTTS.h"
#include "audio_extern.h"
#include "led_task.h"
extern BOOL g_green_led_status;
extern BOOL g_red_led_status;
extern BOOL g_blue_led_status;
extern const unsigned char audiopoweron[];
static osEventFlagsId_t waitAudioPlayDone = NULL;
QueueHandle_t audioQueueHandle = NULL;
static uint8_t audio_sleep_handler = 0xff;
static TimerHandle_t delay_timer;
void before_sleep(void *pdata, slpManLpState state)
{
slpManAONIOLatchEn(true);
}
/**
\brief definition of restore callback(called after sleep)
*/
void after_sleep(void *pdata, slpManLpState state)
{
GpioPinConfig_t gpio_config;
gpio_config.pinDirection = GPIO_DIRECTION_OUTPUT;
gpio_config.misc.initOutput = 0;
GPIO_pinConfig(0, 12, &gpio_config);
gpio_config.misc.initOutput = 0;
GPIO_pinConfig(1, 9, &gpio_config);
PadConfig_t padConfig;
PAD_getDefaultConfig(&padConfig);
padConfig.mux = PAD_MUX_ALT0;
PAD_setPinConfig(LED_GREEN_PAD, &padConfig);
PAD_setPinConfig(LED_RED_PAD, &padConfig);
PAD_setPinConfig(LED_BLUE_PAD, &padConfig);
gpio_config.pinDirection = GPIO_DIRECTION_OUTPUT;
if (!getNetStatus())
{
gpio_config.misc.initOutput = g_green_led_status ? 0 : 1;
GPIO_pinConfig(LED_GREEN_PORT, LED_GREEN_PIN, &gpio_config);
gpio_config.misc.initOutput = 0;
GPIO_pinConfig(LED_RED_PORT, LED_RED_PIN, &gpio_config);
GPIO_pinConfig(LED_BLUE_PORT, LED_BLUE_PIN, &gpio_config);
}
else if ((usb_portmon_vbuspad_level() == 1))
{
gpio_config.misc.initOutput = 1;
GPIO_pinConfig(LED_RED_PORT, LED_RED_PIN, &gpio_config);
gpio_config.misc.initOutput = 0;
GPIO_pinConfig(LED_GREEN_PORT, LED_GREEN_PIN, &gpio_config);
GPIO_pinConfig(LED_BLUE_PORT, LED_BLUE_PIN, &gpio_config);
}
else if (getNetStatus() && !getServerStatus())
{
gpio_config.misc.initOutput = 1;
GPIO_pinConfig(LED_BLUE_PORT, LED_BLUE_PIN, &gpio_config);
gpio_config.misc.initOutput = 0;
GPIO_pinConfig(LED_RED_PORT, LED_RED_PIN, &gpio_config);
GPIO_pinConfig(LED_GREEN_PORT, LED_GREEN_PIN, &gpio_config);
}
else if (getServerStatus())
{
gpio_config.misc.initOutput = 1;
GPIO_pinConfig(LED_BLUE_PORT, LED_BLUE_PIN, &gpio_config);
gpio_config.misc.initOutput = 0;
GPIO_pinConfig(LED_RED_PORT, LED_RED_PIN, &gpio_config);
GPIO_pinConfig(LED_GREEN_PORT, LED_GREEN_PIN, &gpio_config);
}
}
void audio_data_cb(uint8_t *data, uint32_t len, uint8_t bits, uint8_t channels)
{
//这里可以对音频数据进行软件音量缩放,或者直接清空来静音
//软件音量缩放参考HAL_I2sSrcAdjustVolumn
int value = 4;
int ret = am_kv_get("volume", &value, 1);
if(ret > 0)
{
DBG("AUDIO GET VOLUME SUCCESS %d", value);
HAL_I2sSrcAdjustVolumn(data, len, value);
}
else
{
DBG("AUDIO GET VOLUME FAIL %d", value);
HAL_I2sSrcAdjustVolumn(data, len, 4);
}
DBG("%x,%d,%d,%d", data, len, bits, channels);
}
void app_pa_on(uint32_t arg)
{
GPIO_pinWrite(1, 1 << 9, 1 << 9);
}
void audio_event_cb(uint32_t event, void *param)
{
DBG("%d", event);
switch (event)
{
case MULTIMEDIA_CB_AUDIO_DECODE_START:
slpManPlatVoteDisableSleep(audio_sleep_handler, SLP_SLP1_STATE);
GPIO_pinWrite(0, 1 << 12, 1 << 12);
audio_play_write_blank_raw(0, 6);
break;
case MULTIMEDIA_CB_AUDIO_OUTPUT_START:
xTimerStart(delay_timer, 200);
break;
case MULTIMEDIA_CB_TTS_INIT:
if (4 == sizeof("你好"))
{
audio_play_tts_set_param(0, ivTTS_PARAM_INPUT_CODEPAGE, ivTTS_CODEPAGE_GBK);
}
else
{
audio_play_tts_set_param(0, ivTTS_PARAM_INPUT_CODEPAGE, ivTTS_CODEPAGE_UTF8);
}
break;
case MULTIMEDIA_CB_AUDIO_DONE:
xTimerStop(delay_timer, 0);
DBG("audio play done, result = %d!", audio_play_get_last_error(0));
GPIO_pinWrite(1, 1 << 9, 0);
GPIO_pinWrite(0, 1 << 12, 0);
slpManPlatVoteEnableSleep(audio_sleep_handler, SLP_SLP1_STATE);
osEventFlagsSet(waitAudioPlayDone, WAIT_PLAY_FLAG);
break;
}
}
void audio_task(void *param)
{
audioQueueData audioQueueRecv = {0};
uint32_t result = 0;
while (1)
{
if (xQueueReceive(audioQueueHandle, &audioQueueRecv, portMAX_DELAY))
{
DBG("this is play priority %d", audioQueueRecv.priority);
DBG("this is play playType %d", audioQueueRecv.playType);
if (audioQueueRecv.priority == MONEY_PLAY)
{
if (audioQueueRecv.playType == TTS_PLAY)
{
audio_play_tts_text(0, audioQueueRecv.message.tts.data, audioQueueRecv.message.tts.len);
}
else if (audioQueueRecv.playType == FILE_PLAY)
{
audio_play_multi_files(0, audioQueueRecv.message.file.info, audioQueueRecv.message.file.count);
}
}
else if (audioQueueRecv.priority == PAD_PLAY)
{
}
result = osEventFlagsWait(waitAudioPlayDone, WAIT_PLAY_FLAG, osFlagsWaitAll, 20000);
DBG("this is play wait result %d", result);
if (audioQueueRecv.playType == TTS_PLAY) {
DBG("free tts data");
free(audioQueueRecv.message.tts.data);
}
else if(audioQueueRecv.playType == FILE_PLAY)
{
free(audioQueueRecv.message.file.info);
DBG("free file data");
}
}
}
vTaskDelete(NULL);
}
void audio_task_init(void)
{
GpioPinConfig_t gpio_config;
gpio_config.pinDirection = GPIO_DIRECTION_OUTPUT;
gpio_config.misc.initOutput = 0;
GPIO_pinConfig(0, 12, &gpio_config);
PadConfig_t config;
PAD_getDefaultConfig(&config);
config.mux = PAD_MUX_ALT0;
PAD_setPinConfig(45, &config);
GPIO_pinConfig(1, 9, &gpio_config);
slpManRegisterUsrdefinedBackupCb(before_sleep, NULL);
slpManRegisterUsrdefinedRestoreCb(after_sleep, NULL);
ivCStrA sdk_id = AISOUND_SDK_USERID;
slpManSetPmuSleepMode(true, SLP_SLP1_STATE, false);
slpManApplyPlatVoteHandle("audio", &audio_sleep_handler);
slpManPlatVoteDisableSleep(audio_sleep_handler, SLP_SLP2_STATE);
delay_timer = xTimerCreate(NULL, 200, 0, 0, app_pa_on);
audio_play_global_init(audio_event_cb, audio_data_cb, NULL);
audio_play_tts_set_resource(ivtts_16k_lite, sdk_id);
//现在使用ES7149/ES7148用如下配置如果不是请根据实际情况配置bus_id直接写0
// Audio_CodecI2SInit(0, I2S_MODE_I2S, I2S_FRAME_SIZE_16_16);
//如下配置可使用TM8211
Audio_CodecI2SInit(0, I2S_MODE_MSB, I2S_FRAME_SIZE_16_16);
if (waitAudioPlayDone == NULL)
{
waitAudioPlayDone = osEventFlagsNew(NULL);
}
audioQueueHandle = xQueueCreate(100, sizeof(audioQueueData));
audioQueueData powerOn = {0};
powerOn.playType = TTS_PLAY;
powerOn.priority = MONEY_PLAY;
char str[] = "正在开机";
powerOn.message.tts.data = malloc(sizeof(str));
memcpy(powerOn.message.tts.data, str, sizeof(str));
powerOn.message.tts.len = sizeof(str);
if (pdTRUE != xQueueSend(audioQueueHandle, &powerOn, 0))
{
DBG("start send audio fail");
}
xTaskCreate(audio_task, " ", 2048, NULL, 20, NULL);
}

View File

@@ -0,0 +1,57 @@
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "cmsis_os2.h"
#include "adc.h"
#include "common_api.h"
#include "plat_config.h"
#include "charge_management.h"
#define VBAT_FLAG (0x1)
static osEventFlagsId_t getVbatFlag = NULL;
volatile static uint32_t vbatChannelResult = 0;
volatile static uint16_t vbat = 0;
uint16_t getVbat()
{
return vbat;
}
static void ADC_VbatChannelCallback(uint32_t result)
{
vbatChannelResult = result;
osEventFlagsSet(getVbatFlag, VBAT_FLAG);
}
static void charge_task(void *param)
{
AdcConfig_t adcConfig;
ADC_getDefaultConfig(&adcConfig);
adcConfig.channelConfig.vbatResDiv = ADC_VBAT_RESDIV_RATIO_3OVER16;
uint32_t result = 0;
while (1)
{
ADC_channelInit(ADC_CHANNEL_VBAT, ADC_USER_PLAT, &adcConfig, ADC_VbatChannelCallback);
ADC_startConversion(ADC_CHANNEL_VBAT, ADC_USER_PLAT);
result = osEventFlagsWait(getVbatFlag, VBAT_FLAG, osFlagsWaitAll, 3000);
if (result == VBAT_FLAG)
{
vbat = (HAL_ADC_CalibrateRawCode(vbatChannelResult) * 16 / 3 + 500) / 1000;
DBG("get vbat result %d", vbat);
}
else
{
DBG("get vbat timeout");
}
ADC_channelDeInit(ADC_CHANNEL_VBAT, ADC_USER_PLAT);
osDelay(60000); // 60S获取一次当前电量
}
vTaskDelete(NULL);
}
void charge_init()
{
if (getVbatFlag == NULL)
{
getVbatFlag = osEventFlagsNew(NULL);
}
xTaskCreate(charge_task, "", 256, NULL, 20, NULL);
}

View File

@@ -0,0 +1,652 @@
/*
* Copyright (c) 2022 OpenLuat & AirM2M
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "bsp.h"
#include "bsp_custom.h"
#include "common_api.h"
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "ps_event_callback.h"
#include "ps_lib_api.h"
#include "cmisim.h"
#include "cmips.h"
#include "slpman.h"
#include "cJSON.h"
#include "MQTTClient.h"
#include "audio_task.h"
#include "audioFile.h"
#include "audio_play.h"
#include "math.h"
#include "charge_management.h"
#include "key_pad.h"
#include "am_kv.h"
#include "led_task.h"
#include "plat_config.h"
#include "fdb_init.h"
#include "cmimm.h"
extern QueueHandle_t audioQueueHandle;
#define MQTT_HOST "lbsmqtt.airm2m.com" // MQTT服务器的地址和端口号
#define MQTT_PORT 1884
#define CLIENT_ID "123456789"
#define USERNAME "username"
#define PASSWORD "password"
const static char mqtt_sub_topic[] = "/sub/topic/money"; //订阅的主题
const static char mqtt_pub_topic[] = "/pub/topic/message"; //发布的主题
static char mqtt_send_payload[] = "hello mqtt_test!!!";
#define QMSG_ID_BASE (0x160)
#define QMSG_ID_NW_IPV4_READY (QMSG_ID_BASE)
#define QMSG_ID_NW_IPV6_READY (QMSG_ID_BASE + 1)
#define QMSG_ID_NW_IPV4_6_READY (QMSG_ID_BASE + 2)
#define QMSG_ID_NW_DISCONNECT (QMSG_ID_BASE + 3)
#define QMSG_ID_SOCK_SENDPKG (QMSG_ID_BASE + 4)
#define QMSG_ID_SOCK_RECVPKG (QMSG_ID_BASE + 5)
#define APP_EVENT_QUEUE_SIZE (10)
static QueueHandle_t psEventQueueHandle;
static bool netStatus = false;
static bool serverStatus = false;
bool getNetStatus()
{
return netStatus;
}
bool getServerStatus()
{
return serverStatus;
}
static void sendQueueMsg(UINT32 msgId, UINT32 xTickstoWait){
eventCallbackMessage_t *queueMsg = NULL;
queueMsg = malloc(sizeof(eventCallbackMessage_t));
queueMsg->messageId = msgId;
if (psEventQueueHandle){
if (pdTRUE != xQueueSend(psEventQueueHandle, &queueMsg, xTickstoWait)){
DBG("xQueueSend error");
}
}
}
int fomatMoney(int num, audioQueueData *data, int *index, BOOL flag)
{
uint32_t audioArray[10][2] =
{
{audio0, sizeof(audio0)},
{audio1, sizeof(audio1)},
{audio2, sizeof(audio2)},
{audio3, sizeof(audio3)},
{audio4, sizeof(audio4)},
{audio5, sizeof(audio5)},
{audio6, sizeof(audio6)},
{audio7, sizeof(audio7)},
{audio8, sizeof(audio8)},
{audio9, sizeof(audio9)}
};
int thousand = (num - num % 1000) / 1000;
int hundred = ((num % 1000) - ((num % 1000) % 100)) / 100;
int ten = ((num % 100) - ((num % 100) % 10)) / 10;
int unit = num % 10;
if (thousand == 0)
{
thousand = -1;
if (hundred == 0)
{
hundred = -1;
if (ten == 0)
{
ten = -1;
if (unit == 0)
{
unit = -1;
}
}
}
}
if (unit == 0)
{
unit = -1;
if (ten == 0)
{
ten = -1;
if (hundred == 0)
{
hundred = -1;
if (thousand == 0)
{
thousand = -1;
}
}
}
}
if (ten == 0 && hundred == 0)
{
ten = -1;
}
if (thousand != -1)
{
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[thousand][0];
data->message.file.info[*index].rom_data_len = audioArray[thousand][1];
}
*index += 1;
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audio1000;
data->message.file.info[*index].rom_data_len = sizeof(audio1000);
}
*index += 1;
}
if (hundred != -1)
{
if(flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[hundred][0];
data->message.file.info[*index].rom_data_len = audioArray[hundred][1];
}
*index += 1;
if(flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audio100;
data->message.file.info[*index].rom_data_len = sizeof(audio100);
}
*index += 1;
}
if (ten != -1)
{
if (!(ten == 1 && hundred == -1 && thousand == -1))
{
if(flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[ten][0];
data->message.file.info[*index].rom_data_len = audioArray[ten][1];
}
*index += 1;
}
DBG("333 %d\r\n", *index);
if (ten != 0)
{
if(flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audio10;
data->message.file.info[*index].rom_data_len = sizeof(audio10);
}
*index += 1;
}
}
if (unit != -1)
{
if(flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[unit][0];
data->message.file.info[*index].rom_data_len = audioArray[unit][1];
}
*index += 1;
}
return 0;
}
static int strToFile(char *money, audioQueueData *data, int *index, bool flag)
{
if (flag)
{
data->message.file.info[*index].address = audiozhifubao;
data->message.file.info[*index].rom_data_len = sizeof(audiozhifubao);
}
*index += 1;
uint32_t audioArray[10][2] =
{
{audio0, sizeof(audio0)},
{audio1, sizeof(audio1)},
{audio2, sizeof(audio2)},
{audio3, sizeof(audio3)},
{audio4, sizeof(audio4)},
{audio5, sizeof(audio5)},
{audio6, sizeof(audio6)},
{audio7, sizeof(audio7)},
{audio8, sizeof(audio8)},
{audio9, sizeof(audio9)}
};
int count = 0;
int integer = 0;
char *str = NULL;
char intStr[8] = {0};
char decStr[3] = {0};
str = strstr(money, ".");
if (str != NULL)
{
memcpy(intStr, money, str - money);
str = str + 1;
memcpy(decStr, str, 2);
integer = atoi(intStr);
}
else
{
integer = atoi(money);
}
if (integer >= 10000)
{
int filecount = fomatMoney(integer / 10000, data, index, flag);
//TODO 待处理两万
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audio10000;
data->message.file.info[*index].rom_data_len = sizeof(audio10000);
}
*index += 1;
if (((integer % 10000) < 1000) && ((integer % 10000) != 0))
{
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[0][0];
data->message.file.info[*index].rom_data_len = audioArray[0][1];
}
*index += 1;
}
}
if ((integer % 10000) > 0)
{
int filecount = fomatMoney(integer % 10000, data, index, flag);
//TODO 待处理两千
// if()
// if (flag)
// {
// data->message.file.info[*index].path = NULL;
// data->message.file.info[*index].address = audioK;
// data->message.file.info[*index].rom_data_len = sizeof(audioK);
// }
// *index += 1;
// count += filecount;
}
if (*index == 1)
{
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[0][0];
data->message.file.info[*index].rom_data_len = audioArray[0][1];
}
*index += 1;
}
int decial = atoi(decStr);
if (decial > 0)
{
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audiodot;
data->message.file.info[*index].rom_data_len = sizeof(audiodot);
}
*index += 1;
if (decial > 10)
{
int ten = decial / 10;
int unit = decial % 10;
if (ten != 0 && unit != 0)
{
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[ten][0];
data->message.file.info[*index].rom_data_len = audioArray[0][1];
}
*index += 1;
if(flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[unit][0];
data->message.file.info[*index].rom_data_len = audioArray[0][1];
}
*index += 1;
}
else if(ten == 0 && unit!=0)
{
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[0][0];
data->message.file.info[*index].rom_data_len = audioArray[0][1];
}
*index += 1;
if(flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[unit][0];
data->message.file.info[*index].rom_data_len = audioArray[0][1];
}
*index += 1;
}
else if(ten !=0 && unit == 0)
{
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[0][0];
data->message.file.info[*index].rom_data_len = audioArray[0][1];
}
*index += 1;
}
}
else
{
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioArray[decial][0];
data->message.file.info[*index].rom_data_len = audioArray[decial][1];
}
*index += 1;
}
}
if (flag)
{
data->message.file.info[*index].path = NULL;
data->message.file.info[*index].address = audioyuan;
data->message.file.info[*index].rom_data_len = sizeof(audioyuan);
}
*index += 1;
return count;
}
static INT32 mqttPSUrcCallback(PsEventID eventID, void *param, UINT32 paramLen){
CmiSimImsiStr *imsi = NULL;
CmiPsCeregInd *creg = NULL;
UINT8 rssi = 0;
NmAtiNetInfoInd *netif = NULL;
switch(eventID){
case PS_URC_ID_SIM_READY:{
imsi = (CmiSimImsiStr *)param;
DBG("SIM ready(imsi=%s len=%d)", imsi->contents, imsi->length);
break;
}
case PS_URC_ID_MM_SIGQ:{
CmiMmCesqInd *pMmCesqInd = (CmiMmCesqInd *)param;
rssi = mmGetCsqRssiFromCesq(pMmCesqInd->rsrp, pMmCesqInd->rsrq, pMmCesqInd->rssiCompensation);
DBG("RSSI signal=%d", rssi);
break;
}
case PS_URC_ID_PS_BEARER_ACTED:{
DBG("Default bearer activated");
netStatus = true;
break;
}
case PS_URC_ID_PS_BEARER_DEACTED:{
DBG("Default bearer Deactivated");
sendQueueMsg(QMSG_ID_NW_DISCONNECT, 0);
break;
}
case PS_URC_ID_PS_CEREG_CHANGED:{
creg = (CmiPsCeregInd *)param;
DBG("CREG message act:%d celId:%d locPresent:%d state:%d", creg->act, creg->celId, creg->locPresent, creg->state);
break;
}
case PS_URC_ID_PS_NETINFO:{
netif = (NmAtiNetInfoInd *)param;
if (netif->netifInfo.netStatus == NM_NETIF_ACTIVATED){
serverStatus = true;
netStatus = true;
DBG("netif acivated");
sendQueueMsg(QMSG_ID_NW_IPV4_READY, 0);
}else if (netif->netifInfo.netStatus == NM_NETIF_OOS){
DBG("PSIF network OOS");
}else if (netif->netifInfo.netStatus == NM_NO_NETIF_OR_DEACTIVATED ||
netif->netifInfo.netStatus == NM_NO_NETIF_NOT_DIAL){
serverStatus = false;
netStatus = false;
DBG("PSIF network deactive");
}
break;
}
default:
break;
}
return 0;
}
void messageArrived(MessageData* data)
{
if (memcmp(mqtt_sub_topic, data->topicName->lenstring.data, strlen(mqtt_sub_topic)) == 0)
{
cJSON *boss = NULL;
DBG("mqtt Message arrived on topic %.*s: %.*s\n", data->topicName->lenstring.len, data->topicName->lenstring.data, data->message->payloadlen, data->message->payload);
boss = cJSON_Parse((const char *)data->message->payload);
if (boss == NULL){
DBG("cjson parse fail");
}
else
{
DBG("cjson parse success");
cJSON *money = cJSON_GetObjectItem(boss, "money");
if(money == NULL)
{
DBG("Missing amount field %d", money);
return 0;
}
if (cJSON_IsString(money))
{
audioQueueData moneyPlay = {0};
moneyPlay.priority = MONEY_PLAY;
moneyPlay.playType = FILE_PLAY;
char* str = strstr(money->valuestring, ".");
//判断金额长度是否大于8个也就是千万级别的金额如果是则播报收款成功如果不是则播报对应金额这里并未对金额字段做合法性判断
if (str != NULL)
{
if((str - money->valuestring) > 8)
{
moneyPlay.message.file.info = (audio_play_info_t *)calloc(1, sizeof(audio_play_info_t));
moneyPlay.message.file.info->address = audioshoukuanchenggong;
moneyPlay.message.file.info->rom_data_len = audioshoukuanchenggongSize;
moneyPlay.message.file.count = 1;
}
else
{
//调用strToFile来将金额格式化为对应的文件播报数据需要调用两次第一次获取需要malloc的空间第二次将文件数据放进空间里
int index = 0;
strToFile(money->valuestring, &moneyPlay, &index, false);
moneyPlay.message.file.info = (audio_play_info_t *)calloc(index, sizeof(audio_play_info_t));
index = 0;
strToFile(money->valuestring, &moneyPlay, &index, true);
moneyPlay.message.file.count = index;
}
}
else
{
if(strlen(money->valuestring) > 8)
{
moneyPlay.message.file.info = (audio_play_info_t *)calloc(1, sizeof(audio_play_info_t));
moneyPlay.message.file.info->address = audioshoukuanchenggong;
moneyPlay.message.file.info->rom_data_len = audioshoukuanchenggongSize;
moneyPlay.message.file.count = 1;
}
else
{
str++;
if(strlen(str) > 2)
{
moneyPlay.message.file.info = (audio_play_info_t *)calloc(1, sizeof(audio_play_info_t));
moneyPlay.message.file.info->address = audioshoukuanchenggong;
moneyPlay.message.file.info->rom_data_len = audioshoukuanchenggongSize;
moneyPlay.message.file.count = 1;
}
else
{
//调用strToFile来将金额格式化为对应的文件播报数据需要调用两次第一次获取需要malloc的空间第二次将文件数据放进空间里
int index = 0;
strToFile(money->valuestring, &moneyPlay, &index, false);
moneyPlay.message.file.info = (audio_play_info_t *)calloc(index, sizeof(audio_play_info_t));
index = 0;
strToFile(money->valuestring, &moneyPlay, &index, true);
moneyPlay.message.file.count = index;
}
}
}
if (pdTRUE != xQueueSend(audioQueueHandle, &moneyPlay, 0)){
DBG("mqttsub xQueueSend error");
}
}
else
{
DBG("money data is invalid %d", cJSON_IsString(money));
}
}
cJSON_Delete(boss);
}
}
static void mqtt_demo(void){
int rc = 0;
MQTTClient mqttClient = {0};
Network mqttNetwork = {0};
MQTTMessage message = {0};
MQTTPacket_connectData connectData = MQTTPacket_connectData_initializer;
connectData.MQTTVersion = 4;
int ret = 0;
char str[32] = {0};
char clientId[17] = {0};
char username[17] = {0};
char password[17] = {0};
ret = am_kv_get("clientId", str, 17); //从数据库中读取clientId如果没读到则用默认的
if(ret > 0 )
{
memcpy(clientId, str, 17);
connectData.clientID.cstring = clientId;
}
else
{
connectData.clientID.cstring = CLIENT_ID;
}
memset(str, 0, 32);
ret = am_kv_get("username", str, 17); //从数据库中读取username如果没读到则用默认的
if(ret > 0 )
{
memcpy(username, str, 17);
connectData.username.cstring = username;
}
else
{
connectData.username.cstring = USERNAME;
}
memset(str, 0, 32);
ret = am_kv_get("password", str, 17); //从数据库中读取password如果没读到则用默认的
if(ret > 0 )
{
memcpy(password, str, 17);
connectData.password.cstring = password;
}
else
{
connectData.password.cstring = PASSWORD;
}
memset(str, 0, 32);
DBG("test clientid %s", clientId);
DBG("test username %s", username);
DBG("test password %s", password);
connectData.keepAliveInterval = 120;
mqtt_connect(&mqttClient, &mqttNetwork, MQTT_HOST, MQTT_PORT, &connectData);
if ((rc = MQTTSubscribe(&mqttClient, mqtt_sub_topic, 0, messageArrived)) != 0)
{
DBG("mqtt Return code from MQTT subscribe is %d\n", rc);
serverStatus = false;
}
else
{
serverStatus = true;
audioQueueData welcome = {0};
welcome.playType = TTS_PLAY;
welcome.priority = MONEY_PLAY;
char str[] = "服务器连接成功";
welcome.message.tts.data = malloc(sizeof(str));
memcpy(welcome.message.tts.data, str, sizeof(str));
welcome.message.tts.len = sizeof(str);
if (pdTRUE != xQueueSend(audioQueueHandle, &welcome, 0)){
DBG("mqttsub xQueueSend error");
}
}
while(1){
int len = strlen(mqtt_send_payload);
message.qos = 1;
message.retained = 0;
message.payload = mqtt_send_payload;
message.payloadlen = len;
DBG("mqtt_demo send data");
MQTTPublish(&mqttClient, mqtt_pub_topic, &message);
#if !defined(MQTT_TASK)
if ((rc = MQTTYield(&mqttClient, 1000)) != 0)
DBG("mqtt_demo Return code from yield is %d\n", rc);
#endif
osDelay(60000);
}
}
static void mqttclient_task(void *param){
eventCallbackMessage_t *queueItem = NULL;
psEventQueueHandle = xQueueCreate(APP_EVENT_QUEUE_SIZE, sizeof(eventCallbackMessage_t*));
if (psEventQueueHandle == NULL){
DBG("psEventQueue create error!");
return;
}
registerPSEventCallback(PS_GROUP_ALL_MASK, mqttPSUrcCallback);
while(1){
if (xQueueReceive(psEventQueueHandle, &queueItem, portMAX_DELAY)){
switch(queueItem->messageId){
case QMSG_ID_NW_IPV4_READY:
case QMSG_ID_NW_IPV6_READY:
case QMSG_ID_NW_IPV4_6_READY:
mqtt_demo();
break;
case QMSG_ID_NW_DISCONNECT:
break;
default:
break;
}
free(queueItem);
}
}
vTaskDelete(NULL);
}
static void mqttclient_task_init(void){
xTaskCreate(mqttclient_task, "", 4096, NULL, 20, NULL);
}
extern void usb_data_init(void);
INIT_HW_EXPORT(usb_data_init, "1");
INIT_DRV_EXPORT(fdb_init, "2");
INIT_TASK_EXPORT(mqttclient_task_init, "2");
INIT_TASK_EXPORT(audio_task_init, "2");
INIT_TASK_EXPORT(key_pad_init, "2");
INIT_TASK_EXPORT(charge_init, "2");
INIT_TASK_EXPORT(led_task_init, "2");

View File

@@ -0,0 +1,32 @@
#include "common_api.h"
void fdb_init(void)
{
am_kv_init();
char value[2];
int ret = am_kv_get("flag", &value, 2);
//读取kv数据库用户是否初始化过如果没有则写入一个flag和需要初始化的值表示用户已初始化如果用户初始化过则不做任何操作
DBG("get value result %d", ret);
if (ret > 0)
{
DBG("get value %s", value);
if(memcmp("1", value, strlen("1")))
{
DBG("need init");
ret = am_kv_set("flag", "1", 2);
DBG("init result1 %d", ret);
int volume = 4;
ret = am_kv_set("volume", &volume, 1);
}
else
{
DBG("no need init");
}
}
else
{
ret = am_kv_set("flag", "1", 2);
int volume = 4;
ret = am_kv_set("volume", &volume, 1);
DBG("init result2 %d", ret);
}
}

View File

@@ -0,0 +1,313 @@
#include "gpio.h"
#include "pad.h"
#include "slpman.h"
#include "apmu_external.h"
#include "common_api.h"
#include "FreeRTOS.h"
#include "timers.h"
#include "pwrkey.h"
#include "queue.h"
#include "charge_management.h"
#include "audio_task.h"
#include "audio_extern.h"
#define KEY1_MESSAGE 0x1
#define KEY2_MESSAGE 0x2
#define PWR_MESSAGE 0x3
static QueueHandle_t padKeyEventQueueHandle;
typedef struct
{
uint32_t messageId;
} padkeyQueueMsg_t;
TimerHandle_t timerHandlePowerOff = NULL;
TimerHandle_t timerHandlePower = NULL;
extern QueueHandle_t audioQueueHandle;
TimerCallbackFunction_t timerCb(TimerHandle_t xTimer)
{
if (timerHandlePower == xTimer)
{
xTimerStart(timerHandlePowerOff, 3000);
audioQueueData audioQueueSend = {0};
audioQueueSend.playType = TTS_PLAY;
audioQueueSend.priority = MONEY_PLAY;
char str[] = "正在关机";
audioQueueSend.message.tts.data = malloc(sizeof(str));
memcpy(audioQueueSend.message.tts.data, str, sizeof(str));
audioQueueSend.message.tts.len = sizeof(str);
if (pdTRUE != xQueueSend(audioQueueHandle, &audioQueueSend, 0))
{
DBG("power off send audio fail");
}
DBG("power long press");
}
else if (timerHandlePowerOff == xTimer)
{
DBG("poweroff");
uniLogFlushOut();
pwrKeyStartPowerOff();
}
}
void pwrkeyStatusCb(pwrKeyPressStatus status)
{
BaseType_t xHigherPriorityTaskWoken;
xHigherPriorityTaskWoken = pdFALSE;
uint32_t msgId = PWR_MESSAGE;
switch (status)
{
case PWRKEY_RELEASE:
if (pdTRUE != xQueueSendFromISR(padKeyEventQueueHandle, &msgId, &xHigherPriorityTaskWoken))
{
}
portYIELD_FROM_ISR(pdTRUE);
break;
case PWRKEY_PRESS:
if (pdTRUE != xTimerStartFromISR(timerHandlePower, &xHigherPriorityTaskWoken))
{
}
portYIELD_FROM_ISR(pdTRUE);
break;
case PWRKEY_LONGPRESS:
break;
case PWRKEY_REPEAT:
break;
default:
break;
}
}
#define BUTTON_GPIO_INSTANCE 1
#define BUTTON_GPIO_PIN 10
static void GPIO_ISR()
{
uint32_t msgId = KEY1_MESSAGE;
BaseType_t xHigherPriorityTaskWoken;
xHigherPriorityTaskWoken = pdFALSE;
// Save current irq mask and diable whole port interrupts to get rid of interrupt overflow
uint16_t portIrqMask = GPIO_saveAndSetIrqMask(BUTTON_GPIO_INSTANCE);
if (GPIO_getInterruptFlags(BUTTON_GPIO_INSTANCE) & (1 << BUTTON_GPIO_PIN))
{
if (pdTRUE != xQueueSendFromISR(padKeyEventQueueHandle, &msgId, &xHigherPriorityTaskWoken))
{
}
GPIO_clearInterruptFlags(BUTTON_GPIO_INSTANCE, 1 << BUTTON_GPIO_PIN);
}
GPIO_restoreIrqMask(BUTTON_GPIO_INSTANCE, portIrqMask);
portYIELD_FROM_ISR(pdTRUE);
}
static void pad3IsrCb()
{
BaseType_t xHigherPriorityTaskWoken;
xHigherPriorityTaskWoken = pdFALSE;
uint8_t status = slpManGetWakeupPinValue();
uint32_t msgId = KEY2_MESSAGE;
if ((status & 0x8) == 0) //按下
{
if (pdTRUE != xQueueSendFromISR(padKeyEventQueueHandle, &msgId, &xHigherPriorityTaskWoken))
{
}
}
portYIELD_FROM_ISR(pdTRUE);
}
void padkeyIsrCb(int num)
{
switch (num)
{
case 3:
pad3IsrCb();
break;
default:
break;
}
}
static void padKeyTask(void *arg)
{
uint32_t msgId = 0;
int volume = 4;
int ret = 0;
while (1)
{
if (xQueueReceive(padKeyEventQueueHandle, &msgId, portMAX_DELAY))
{
switch (msgId)
{
case KEY1_MESSAGE:
{
audioQueueData volPlus = {0};
volPlus.playType = TTS_PLAY;
volPlus.priority = MONEY_PLAY;
volume = 4;
ret = am_kv_get("volume", &volume, 1);
if (ret > 0)
{
if (volume < 7)
{
volume++;
if (volume > 7)
{
volume = 7;
}
am_kv_set("volume", &volume, 1);
}
if (volume == 7)
{
char str[] = "音量最大";
volPlus.message.tts.data = malloc(sizeof(str));
memcpy(volPlus.message.tts.data, str, sizeof(str));
volPlus.message.tts.len = sizeof(str);
}
else
{
char str[] = "音量加";
volPlus.message.tts.data = malloc(sizeof(str));
memcpy(volPlus.message.tts.data, str, sizeof(str));
volPlus.message.tts.len = sizeof(str);
}
}
else
{
char str[] = "音量加";
volPlus.message.tts.data = malloc(sizeof(str));
memcpy(volPlus.message.tts.data, str, sizeof(str));
volPlus.message.tts.len = sizeof(str);
}
if (pdTRUE != xQueueSend(audioQueueHandle, &volPlus, 0))
{
DBG("key1 off send audio fail");
}
break;
}
case KEY2_MESSAGE:
{
audioQueueData volMinus = {0};
volMinus.playType = TTS_PLAY;
volMinus.priority = MONEY_PLAY;
volume = 4;
ret = am_kv_get("volume", &volume, 1);
if (ret > 0)
{
if (volume > 1)
{
volume--;
if (volume < 1)
{
volume = 1;
}
am_kv_set("volume", &volume, 1);
}
if (volume == 1)
{
char str[] = "音量最小";
volMinus.message.tts.data = malloc(sizeof(str));
memcpy(volMinus.message.tts.data, str, sizeof(str));
volMinus.message.tts.len = sizeof(str);
}
else
{
char str[] = "音量减";
volMinus.message.tts.data = malloc(sizeof(str));
memcpy(volMinus.message.tts.data, str, sizeof(str));
volMinus.message.tts.len = sizeof(str);
}
}
else
{
char str[] = "音量减";
volMinus.message.tts.data = malloc(sizeof(str));
memcpy(volMinus.message.tts.data, str, sizeof(str));
volMinus.message.tts.len = sizeof(str);
}
if (pdTRUE != xQueueSend(audioQueueHandle, &volMinus, 0))
{
DBG("key1 off send audio fail");
}
break;
}
case PWR_MESSAGE:
{
if (pdFALSE != xTimerIsTimerActive(timerHandlePower))
{
xTimerStop(timerHandlePower, 5000);
uint16_t vbat = getVbat();
audioQueueData currentPower = {0};
currentPower.priority = MONEY_PLAY;
currentPower.playType = TTS_PLAY;
if (vbat > 4000)
{
char str[] = "当前电量高";
currentPower.message.tts.data = malloc(sizeof(str));
memcpy(currentPower.message.tts.data, str, sizeof(str));
currentPower.message.tts.len = sizeof(str);
}
else if (vbat > 3700 && vbat < 4000)
{
char str[] = "当前电量中";
currentPower.message.tts.data = malloc(sizeof(str));
memcpy(currentPower.message.tts.data, str, sizeof(str));
currentPower.message.tts.len = sizeof(str);
}
else
{
char str[] = "当前电量低";
currentPower.message.tts.data = malloc(sizeof(str));
memcpy(currentPower.message.tts.data, str, sizeof(str));
currentPower.message.tts.len = sizeof(str);
}
if (pdTRUE != xQueueSend(audioQueueHandle, &currentPower, 0))
{
DBG("power off send audio fail");
}
}
break;
}
default:
break;
}
}
}
vTaskDelete(NULL);
}
void key_pad_init(void)
{
if (timerHandlePower == NULL)
{
timerHandlePower = xTimerCreate("test", 3000, false, NULL, timerCb);
}
if (timerHandlePowerOff == NULL)
{
timerHandlePowerOff = xTimerCreate("test", 2000, false, NULL, timerCb);
}
padKeyEventQueueHandle = xQueueCreate(6, sizeof(padkeyQueueMsg_t));
APmuWakeupPadSettings_t wakeupPadSetting;
wakeupPadSetting.negEdgeEn = true;
wakeupPadSetting.posEdgeEn = false;
wakeupPadSetting.pullDownEn = false;
wakeupPadSetting.pullUpEn = true;
apmuSetWakeupPadCfg(WAKEUP_PAD_3, true, &wakeupPadSetting); // enable wakeup pad 3
NVIC_EnableIRQ(PadWakeup3_IRQn);
set_pad_wakeup_callback(padkeyIsrCb);
pwrKeyDly_t pwrKeyDlyCfg;
pwrKeyDlyCfg.longPressTimeout = 3000;
pwrKeyDlyCfg.repeatTimeout = 3000;
pwrKeyInit(PWRKEY_WAKEUP_LOWACTIVE_MODE, true, pwrKeyDlyCfg, pwrkeyStatusCb);
//目前云喇叭开发板上的key1用的是gpio所以暂时作为gpio中断来使用agpio休眠时仅可保持电平不可用于中断,后续设计改为wakeup pad
PadConfig_t padConfig;
PAD_getDefaultConfig(&padConfig);
padConfig.mux = PAD_MUX_ALT0;
PAD_setPinConfig(46, &padConfig);
XIC_SetVector(PXIC1_GPIO_IRQn, GPIO_ISR);
XIC_EnableIRQ(PXIC1_GPIO_IRQn);
GpioPinConfig_t config;
config.pinDirection = GPIO_DIRECTION_INPUT;
config.misc.interruptConfig = GPIO_INTERRUPT_RISING_EDGE;
GPIO_pinConfig(BUTTON_GPIO_INSTANCE, BUTTON_GPIO_PIN, &config);
xTaskCreate(padKeyTask, "", 256, NULL, 20, NULL);
}

View File

@@ -0,0 +1,117 @@
#include "gpio.h"
#include "pad.h"
#include "slpman.h"
#include "apmu_external.h"
#include "common_api.h"
#include "charge_management.h"
#include "mqttStatus.h"
#include "led_task.h"
BOOL g_green_led_status = false;
BOOL g_red_led_status = false;
BOOL g_blue_led_status = false;
#define GREEN_CTRL(level) \
do \
{ \
GPIO_pinWrite(LED_GREEN_PORT, 1 << LED_GREEN_PIN, level << LED_GREEN_PIN); \
} while (0);
#define RED_CTRL(level) \
do \
{ \
GPIO_pinWrite(LED_RED_PORT, 1 << LED_RED_PIN, level << LED_RED_PIN); \
} while (0);
#define BLUE_CTRL(level) \
do \
{ \
GPIO_pinWrite(LED_BLUE_PORT, 1 << LED_BLUE_PIN, level << LED_BLUE_PIN); \
} while (0);
static void led_task(void *param)
{
DBG("entry this func");
slpManAONIOPowerOn();
PadConfig_t padConfig;
PAD_getDefaultConfig(&padConfig);
padConfig.mux = PAD_MUX_ALT0;
PAD_setPinConfig(LED_GREEN_PAD, &padConfig);
PAD_setPinConfig(LED_RED_PAD, &padConfig);
PAD_setPinConfig(LED_BLUE_PAD, &padConfig);
GpioPinConfig_t gpioConfig;
gpioConfig.pinDirection = GPIO_DIRECTION_OUTPUT;
gpioConfig.misc.initOutput = 0;
uint8_t ledHandler = 0xff;
slpManApplyPlatVoteHandle("ledSLP1Vote",&ledHandler);
GPIO_pinConfig(LED_GREEN_PORT, LED_GREEN_PIN, &gpioConfig);
GPIO_pinConfig(LED_RED_PORT, LED_RED_PIN, &gpioConfig);
GPIO_pinConfig(LED_BLUE_PORT, LED_BLUE_PIN, &gpioConfig);
while (1)
{
if (!getNetStatus())
{
slpManPlatVoteDisableSleep(ledHandler, SLP_SLP1_STATE);
GREEN_CTRL(1);
BLUE_CTRL(0);
RED_CTRL(0);
g_green_led_status = true;
g_red_led_status = false;
g_blue_led_status = false;
slpManPlatVoteEnableSleep(ledHandler, SLP_SLP1_STATE);
vTaskDelay(500);
slpManPlatVoteDisableSleep(ledHandler, SLP_SLP1_STATE);
GREEN_CTRL(0);
BLUE_CTRL(0);
RED_CTRL(0);
g_green_led_status = false;
g_red_led_status = false;
g_blue_led_status = false;
slpManPlatVoteEnableSleep(ledHandler, SLP_SLP1_STATE);
vTaskDelay(500);
}
else if ((usb_portmon_vbuspad_level() == 1))
{
slpManPlatVoteDisableSleep(ledHandler, SLP_SLP1_STATE);
GREEN_CTRL(0);
BLUE_CTRL(0);
RED_CTRL(1);
g_green_led_status = false;
g_red_led_status = true;
g_blue_led_status = false;
slpManPlatVoteEnableSleep(ledHandler, SLP_SLP1_STATE);
vTaskDelay(500);
}
else if (getNetStatus() && !getServerStatus())
{
slpManPlatVoteDisableSleep(ledHandler, SLP_SLP1_STATE);
GREEN_CTRL(0);
BLUE_CTRL(1);
RED_CTRL(0);
g_green_led_status = false;
g_red_led_status = false;
g_blue_led_status = true;
slpManPlatVoteEnableSleep(ledHandler, SLP_SLP1_STATE);
vTaskDelay(1000);
}
else if (getServerStatus())
{
slpManPlatVoteDisableSleep(ledHandler, SLP_SLP1_STATE);
GREEN_CTRL(0);
BLUE_CTRL(1);
RED_CTRL(0);
g_green_led_status = false;
g_red_led_status = false;
g_blue_led_status = true;
slpManPlatVoteEnableSleep(ledHandler, SLP_SLP1_STATE);
vTaskDelay(1000);
}
}
vTaskDelete(NULL);
}
void led_task_init(void)
{
xTaskCreate(led_task, "", 256, NULL, 20, NULL);
}

View File

@@ -0,0 +1,107 @@
#include "commontypedef.h"
#include "common_api.h"
#include "cms_api.h"
#include "ps_lib_api.h"
static void usb_serial_input_dummy_cb(uint8_t channel, uint8_t *input, uint32_t len)
{
DBG("usb serial get %d byte, test mode, send back", len);
DBG("usb serial get %s", input);
if (strcmp("AT+CLIENTID?\r\n", (char*)input) == 0)
{
char clientId[32] = {0};
int ret = am_kv_get("clientId", clientId, 16);
if(ret > 0 )
{
usb_serial_output(channel, clientId, strlen(clientId));
}
else
{
usb_serial_output(channel, "OK", strlen("OK"));
}
}
else if (strstr((char*)input, "AT+CLIENTID=") != NULL)
{
char *flag = NULL;
flag = strstr((char*)input, "=");
if(flag != NULL)
{
flag++;
char *flag2 = NULL;
flag2 = strstr(flag, "\r\n");
if (flag2 != NULL)
{
int ret = am_kv_set("clientId", flag, strlen(flag) - 2);
usb_serial_output(channel, "OK", strlen("OK"));
}
}
}
else if (strcmp("AT+USERNAME?\r\n", (char*)input) == 0)
{
int ret = 0;
char name[32] = {0};
ret = am_kv_get("username", name, 31);
if (ret > 0)
{
usb_serial_output(channel, name, strlen(name));
}
else
{
usb_serial_output(channel, "OK", strlen("OK"));
}
}
else if (strstr((char*)input, "AT+USERNAME=") != NULL)
{
char *flag = NULL;
flag = strstr((char*)input, "=");
if(flag != NULL)
{
flag++;
char *flag2 = NULL;
flag2 = strstr(flag, "\r\n");
if (flag2 != NULL)
{
int ret = am_kv_set("username", flag, strlen(flag) - 2);
usb_serial_output(channel, "OK", strlen("OK"));
}
}
}
else if (strcmp("AT+PASSWORD?\r\n", (char*)input) == 0)
{
int ret = 0;
char name[32] = {0};
ret = am_kv_get("password", name, 31);
if (ret > 0)
{
usb_serial_output(channel, name, strlen(name));
}
else
{
usb_serial_output(channel, "OK", strlen("OK"));
}
}
else if (strstr((char*)input, "AT+PASSWORD=") != NULL)
{
char *flag = NULL;
flag = strstr((char*)input, "=");
if(flag != NULL)
{
flag++;
char *flag2 = NULL;
flag2 = strstr(flag, "\r\n");
if (flag2 != NULL)
{
int ret = am_kv_set("password", flag, strlen(flag) - 2);
usb_serial_output(channel, "OK", strlen("OK"));
}
}
}
}
void usb_data_init(void)
{
DBG("this hw demo1");
set_usb_serial_input_callback(usb_serial_input_dummy_cb);
}

View File

@@ -0,0 +1,34 @@
local TARGET_NAME = "cloud_speaker"
local LIB_DIR = "$(buildir)/".. TARGET_NAME .. "/"
local LIB_NAME = "lib" .. TARGET_NAME .. ".a "
includes(SDK_TOP .. "/thirdparty/audio_decoder")
target(TARGET_NAME)
local LIB_DIR = "$(buildir)/mqttclient/"
set_kind("static")
set_targetdir(LIB_DIR)
add_deps("audio_decoder")
add_defines("MQTT_TASK",{public = true})
includes(SDK_TOP .. "/thirdparty/mqtt")
add_deps("mqtt")
includes(SDK_TOP .. "/thirdparty/cJSON")
-- --加入代码和头文件
add_includedirs(SDK_TOP .. "/thirdparty/mqtt/MQTTClient-C/src",{public = true})
add_files(SDK_TOP .. "/thirdparty/mqtt/MQTTClient-C/src/*.c",{public = true})
add_includedirs(SDK_TOP .. "/PLAT/core/tts/include/16k_lite_ver",{public = true})
--加入自己代码和头文件
add_includedirs("/inc",{public = true})
add_files("/src/*.c",{public = true})
--可以继续增加add_includedirs和add_files
add_includedirs("../../thirdparty/fal/inc",{public = true})
add_includedirs("../../thirdparty/flashdb/inc",{public = true})
add_includedirs("../../thirdparty/am_kv/inc",{public = true})
add_files("../../thirdparty/fal/src/*.c",{public = true})
add_files("../../thirdparty/flashdb/src/*.c",{public = true})
add_files("../../thirdparty/am_kv/src/*.c",{public = true})
--自动链接
LIB_USER = LIB_USER .. SDK_TOP .. LIB_DIR .. LIB_NAME .. " "
LIB_USER = LIB_USER .. SDK_TOP .. "/PLAT/core/lib/libaisound50_16K_lite_beta.a "
--甚至可以加入自己的库
target_end()