更新硬件SDK

This commit is contained in:
kerwincui
2023-03-04 03:44:56 +08:00
parent dcdf6e1b7c
commit e39d3d2f03
1900 changed files with 663153 additions and 0 deletions

View File

@@ -0,0 +1,504 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
(This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.)
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
{description}
Copyright (C) {year} {fullname}
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random
Hacker.
{signature of Ty Coon}, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!

View File

@@ -0,0 +1,310 @@
# FALFlash 抽象层
## 1、FAL介绍
FAL (Flash Abstraction Layer) Flash 抽象层,是对 Flash 及基于 Flash 的分区进行管理、操作的抽象层,对上层统一了 Flash 及 分区操作的 API (框架图如下所示),并具有以下特性:
- 支持静态可配置的分区表,并可关联多个 Flash 设备;
- 分区表支持 **自动装载** 。避免在多固件项目,分区表被多次定义的问题;
- 代码精简,对操作系统 **无依赖** ,可运行于裸机平台,比如对资源有一定要求的 Bootloader
- 统一的操作接口。保证了文件系统、OTA、NVM例如[EasyFlash](https://github.com/armink-rtt-pkgs/EasyFlash) 等对 Flash 有一定依赖的组件,底层 Flash 驱动的可重用性;
- 自带基于 Finsh/MSH 的测试命令,可以通过 Shell 按字节寻址的方式操作(读写擦) Flash 或分区,方便开发者进行调试、测试;
![FAL framework](docs/figures/fal_framework.png)
### 1.1、打开 FAL
使用 fal package 需要在 RT-Thread 的包管理器中选择它,具体路径如下:
```
RT-Thread online packages
system packages --->
--- fal: Flash Abstraction Layer implement. Manage flash device and partition.
[*] Enable debug log output
[*] FAL partition table config has defined on 'fal_cfg.h'
(onchip) The flash device which saving partition table
(65536) The patition table end address relative to flash device offset.
[ ] FAL uses SFUD drivers
(norflash0) The name of the device used by FAL (NEW)
version (latest) --->
```
每个功能的配置说明如下:
- 开启调试日志输出(默认开启);
- 分区表是否在 `fal_cfg.h` 中定义默认开启。如果关闭此选项fal 将会自动去指定 Flash 的指定位置去检索并装载分区表,具体配置详见下面两个选项;
- 存放分区表的 Flash 设备;
- 分区表的 **结束地址** 位于 Flash 设备上的偏移。fal 将从此地址开始往回进行检索分区表,直接读取到 Flash 顶部。如果不确定分区表具体位置,这里也可以配置为 Flash 的结束地址fal 将会检索整个 Flash检索时间可能会增加。
- 启用 FAL 针对 SFUD 的移植文件(默认关闭);
- 应输入调用 `rt_sfud_flash_probe` 函数时传入的 FLASH 设备名称(也可以通过 list_device 命令查看 Block Device 的名字获取)。该名称与分区表中的 Flash 名称对应,只有正确设置设备名字,才能完成对 FLASH 的读写操作。
然后让 RT-Thread 的包管理器自动更新,或者使用 `pkgs --update` 命令更新包到 BSP 中。
### 1.2、FAL 目录
| 名称 | 说明 |
| ------- | ---------- |
| inc | 头文件目录 |
| src | 源代码目录 |
| samples | 例程目录 |
### 1.3、FAL API
FAL 相关的 API 如图所示,[点击此处查看 API 参数详解](docs/fal_api.md)。
![FAL API](docs/figures/fal-api.png)
### 1.4、许可证
fal package 遵循 LGPLv2.1 许可,详见 `LICENSE` 文件。
### 1.5、依赖
对 RT-Thread 无依赖,也可用于裸机。
> 测试命令功能需要依赖 RT-Thread Finsh/MSH
## 2、使用 FAL
使用 FAL 的基本步骤如下所示:
1. 打开 FAL从 Env 中打开 fal 软件包并下载到工程。
2. FAL 移植:定义 flash 设备、定义 flash 设备表、定义 flash 分区表。以下主要对步骤 2 展开讲解。
3. 调用 fal_init() 初始化该库:移植完成后,可在应用层调用,如在 main 函数中调用。
![fal 移植](docs/figures/fal-port.png)
### 2.1、定义 flash 设备
在定义 Flash 设备表前,需要先定义 Flash 设备。可以是片内 flash, 也可以是片外基于 SFUD 的 spi flash
- 定义片内 flash 设备可以参考 [`fal_flash_sfud_port.c`](https://github.com/RT-Thread-packages/fal/blob/master/samples/porting/fal_flash_sfud_port.c) 。
- 定义片外 spi flash 设备可以参考 [`fal_flash_stm32f2_port.c`](https://github.com/RT-Thread-packages/fal/blob/master/samples/porting/fal_flash_stm32f2_port.c) 。
定义具体的 Flash 设备对象,用户需要根据自己的 Flash 情况分别实现 `init``read``write``erase` 这些操作函数:
- `static int init(void)`**可选** 的初始化操作。
- `static int read(long offset, uint8_t *buf, size_t size)`:读取操作。
| 参数 | 描述 |
| ------ | ------------------------- |
| offset | 读取数据的 Flash 偏移地址 |
| buf | 存放待读取数据的缓冲区 |
| size | 待读取数据的大小 |
| return | 返回实际读取的数据大小 |
- `static int write(long offset, const uint8_t *buf, size_t size)` :写入操作。
| 参数 | 描述 |
| ------ | ------------------------- |
| offset | 写入数据的 Flash 偏移地址 |
| buf | 存放待写入数据的缓冲区 |
| size | 待写入数据的大小 |
| return | 返回实际写入的数据大小 |
- `static int erase(long offset, size_t size)` :擦除操作。
| 参数 | 描述 |
| ------ | ------------------------- |
| offset | 擦除区域的 Flash 偏移地址 |
| size | 擦除区域的大小 |
| return | 返回实际擦除的区域大小 |
用户需要根据自己的 Flash 情况分别实现这些操作函数。在文件最底部定义了具体的 Flash 设备对象 ,如下示例定义了 stm32f2 片上 flashstm32f2_onchip_flash
```c
const struct fal_flash_dev stm32f2_onchip_flash =
{
.name = "stm32_onchip",
.addr = 0x08000000,
.len = 1024*1024,
.blk_size = 128*1024,
.ops = {init, read, write, erase},
.write_gran = 8
};
```
- `"stm32_onchip"` : Flash 设备的名字。
- `0x08000000`: 对 Flash 操作的起始地址。
- `1024*1024`Flash 的总大小1MB
- `128*1024`Flash 块/扇区大小(因为 STM32F2 各块大小不均匀所以擦除粒度为最大块的大小128K
- `{init, read, write, erase}` Flash 的操作函数。 如果没有 init 初始化过程,第一个操作函数位置可以置空。
- `8` : 设置写粒度,单位 bit 0 表示未生效(默认值为 0 ),该成员是 fal 版本大于 0.4.0 的新增成员。各个 flash 写入粒度不尽相同,可通过该成员进行设置,以下列举几种常见 Flash 写粒度:
- nor flash: 1 bit
- stm32f4: 8 bit
- stm32f1: 32 bit
- stm32l4: 64 bit
### 2.2、定义 flash 设备表
Flash 设备表定义在 `fal_cfg.h` 头文件中,定义分区表前需 **新建 `fal_cfg.h` 文件** ,请将该文件统一放在对应 BSP 或工程目录的 port 文件夹下并将该头文件路径加入到工程。fal_cfg.h 可以参考 [示例文件 fal/samples/porting/fal_cfg.h](https://github.com/RT-Thread-packages/fal/blob/master/samples/porting/fal_cfg.h) 完成。
设备表示例:
```c
/* ===================== Flash device Configuration ========================= */
extern const struct fal_flash_dev stm32f2_onchip_flash;
extern struct fal_flash_dev nor_flash0;
/* flash device table */
#define FAL_FLASH_DEV_TABLE \
{ \
&stm32f2_onchip_flash, \
&nor_flash0, \
}
```
Flash 设备表中,有两个 Flash 对象,一个为 STM32F2 的片内 Flash ,一个为片外的 Nor Flash。
### 2.3、定义 flash 分区表
分区表也定义在 `fal_cfg.h` 头文件中。Flash 分区基于 Flash 设备,每个 Flash 设备又可以有 N 个分区,这些分区的集合就是分区表。在配置分区表前,务必保证已定义好 **Flash 设备****设备表**。fal_cfg.h 可以参考 [示例文件 fal/samples/porting/fal_cfg.h](https://github.com/RT-Thread-packages/fal/blob/master/samples/porting/fal_cfg.h) 完成。
分区表示例:
```c
#define NOR_FLASH_DEV_NAME "norflash0"
/* ====================== Partition Configuration ========================== */
#ifdef FAL_PART_HAS_TABLE_CFG
/* partition table */
#define FAL_PART_TABLE \
{ \
{FAL_PART_MAGIC_WORD, "bl", "stm32_onchip", 0, 64*1024, 0}, \
{FAL_PART_MAGIC_WORD, "app", "stm32_onchip", 64*1024, 704*1024, 0}, \
{FAL_PART_MAGIC_WORD, "easyflash", NOR_FLASH_DEV_NAME, 0, 1024*1024, 0}, \
{FAL_PART_MAGIC_WORD, "download", NOR_FLASH_DEV_NAME, 1024*1024, 1024*1024, 0}, \
}
#endif /* FAL_PART_HAS_TABLE_CFG */
```
上面这个分区表详细描述信息如下:
| 分区名 | Flash 设备名 | 偏移地址 | 大小 | 说明 |
| ----------- | -------------- | --------- | ----- | ------------------ |
| "bl" | "stm32_onchip" | 0 | 64KB | 引导程序 |
| "app" | "stm32_onchip" | 64*1024 | 704KB | 应用程序 |
| "easyflash" | "norflash0" | 0 | 1MB | EasyFlash 参数存储 |
| "download" | "norflash0" | 1024*1024 | 1MB | OTA 下载区 |
用户需要修改的分区参数包括:分区名称、关联的 Flash 设备名、偏移地址(相对 Flash 设备内部)、大小,需要注意以下几点:
- 分区名保证 **不能重复**
- 关联的 Flash 设备 **务必已经在 Flash 设备表中定义好** ,并且 **名称一致** ,否则会出现无法找到 Flash 设备的错误;
- 分区的起始地址和大小 **不能超过 Flash 设备的地址范围** ,否则会导致包初始化错误;
> 注意:每个分区定义时,除了填写上面介绍的参数属性外,需在前面增加 `FAL_PART_MAGIC_WORD` 属性,末尾增加 `0` (目前用于保留功能)
## 3、Finsh/MSH 测试命令
fal 提供了丰富的测试命令,项目只要在 RT-Thread 上开启 Finsh/MSH 功能即可。在做一些基于 Flash 的应用开发、调试时,这些命令会非常实用。它可以准确的写入或者读取指定位置的原始 Flash 数据,快速的验证 Flash 驱动的完整性,甚至可以对 Flash 进行性能测试。
具体功能如下:输入 fal 可以看到完整的命令列表
```
msh />fal
Usage:
fal probe [dev_name|part_name] - probe flash device or partition by given name
fal read addr size - read 'size' bytes starting at 'addr'
fal write addr data1 ... dataN - write some bytes 'data' starting at 'addr'
fal erase addr size - erase 'size' bytes starting at 'addr'
fal bench <blk_size> - benchmark test with per block size
msh />
```
### 3.1、指定待操作的 Flash 设备或 Flash 分区
当第一次使用 fal 命令时,直接输入 `fal probe` 将会显示分区表信息。可以指定待操作的对象为分区表里的某个分区,或者某个 Flash 设备。
分区或者 Flash 被成功选中后,还将会显示它的一些属性情况。大致效果如下:
```
msh />fal probe
No flash device or partition was probed.
Usage: fal probe [dev_name|part_name] - probe flash device or partition by given name.
[I/FAL] ==================== FAL partition table ====================
[I/FAL] | name | flash_dev | offset | length |
[I/FAL] -------------------------------------------------------------
[I/FAL] | bl | stm32_onchip | 0x00000000 | 0x00010000 |
[I/FAL] | app | stm32_onchip | 0x00010000 | 0x000b0000 |
[I/FAL] | ef | norflash0 | 0x00000000 | 0x00100000 |
[I/FAL] | download | norflash0 | 0x00100000 | 0x00100000 |
[I/FAL] =============================================================
msh />
msh />fal probe download
Probed a flash partition | download | flash_dev: norflash0 | offset: 1048576 | len: 1048576 |.
msh />
```
### 3.2、擦除数据
先输入 `fal erase` ,后面跟着待擦除数据的起始地址以及长度。以下命令为:从 0 地址(相对 Flash 或分区)开始擦除 4096 字节数据
> 注意:根据 Flash 特性,擦除动作将按扇区对齐进行处理。所以,如果擦除操作地址或长度未按照 Flash 的扇区对齐,将会擦除掉与其关联的整个扇区数据。
```
msh />fal erase 0 4096
Erase data success. Start from 0x00000000, size is 4096.
msh />
```
### 3.3、写入数据
先输入 `fal write` ,后面跟着 N 个待写入的数据,并以空格隔开。以下命令为:从地址 8 的位置依次开始写入 1、2、3、4 、 5 这 5 个字节数据
```
msh />fal write 8 1 2 3 4 5
Write data success. Start from 0x00000008, size is 5.
Write data: 1 2 3 4 5 .
msh />
```
### 3.4、读取数据
先输入 `fal read` ,后面跟着待读取数据的起始地址以及长度。以下命令为:从 0 地址开始读取 64 字节数据
```
msh />fal read 0 64
Read data success. Start from 0x00000000, size is 64. The data is:
Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
[00000000] FF FF FF FF FF FF FF FF 01 02 03 04 05 FF FF FF
[00000010] FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
[00000020] FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
[00000030] FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
msh />
```
### 3.5、性能测试
性能测试将会测试 Flash 的擦除、写入及读取速度,同时将会测试写入及读取数据的准确性,保证整个 Flash 或整个分区的 写入与读取 数据的一致性。
先输入 `fal bench` ,后面跟着待测试 Flash 的扇区大小(请查看对应的 Flash 手册SPI Nor Flash 一般为 4096。由于性能测试将会让整个 Flash 或者整个分区的数据丢失,所以命令最后必须跟 `yes`
```
msh />fal bench 4096 yes
Erasing 1048576 bytes data, waiting...
Erase benchmark success, total time: 2.674S.
Writing 1048576 bytes data, waiting...
Write benchmark success, total time: 7.107S.
Reading 1048576 bytes data, waiting...
Read benchmark success, total time: 2.716S.
msh />
```
## 4、常见应用
- [基于 FAL 分区的 fatfs 文件系统例程](https://github.com/RT-Thread/IoT_Board/tree/master/examples/15_component_fs_flash)
- [基于 FAL 分区的 littlefs 文件系统应用笔记](https://www.rt-thread.org/document/site/application-note/components/dfs/an0027-littlefs/)
- [基于 FAL 分区的 EasyFlash 移植说明](https://github.com/armink-rtt-pkgs/EasyFlash/tree/master/ports)
## 5、常见问题
**1、使用 FAL 时,无法找到 `fal_cfg.h` 头文件**
`fal_cfg.h` 为 fal 软件包的配置文件,需要用户手动新建,并定义相关的分区表信息。请将该文件统一放在 BSP 的 port 文件夹下或工程目录的 port 文件夹下(若没有则新建 port 文件夹),并将该头文件路径加入到工程,详见 "`2.2、定义 flash 设备表`" 小节。
## 6、联系方式
* 维护:[armink](https://github.com/armink)
* 主页https://github.com/RT-Thread-packages/fal

View File

@@ -0,0 +1,165 @@
/*
* File : fal.h
* This file is part of FAL (Flash Abstraction Layer) package
* COPYRIGHT (C) 2006 - 2018, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2018-05-17 armink the first version
*/
#ifndef _FAL_H_
#define _FAL_H_
#include <fal_cfg.h>
#include "fal_def.h"
/**
* FAL (Flash Abstraction Layer) initialization.
* It will initialize all flash device and all flash partition.
*
* @return >= 0: partitions total number
*/
int fal_init(void);
/* =============== flash device operator API =============== */
/**
* find flash device by name
*
* @param name flash device name
*
* @return != NULL: flash device
* NULL: not found
*/
const struct fal_flash_dev *fal_flash_device_find(const char *name);
/* =============== partition operator API =============== */
/**
* find the partition by name
*
* @param name partition name
*
* @return != NULL: partition
* NULL: not found
*/
const struct fal_partition *fal_partition_find(const char *name);
/**
* get the partition table
*
* @param len return the partition table length
*
* @return partition table
*/
const struct fal_partition *fal_get_partition_table(size_t *len);
/**
* set partition table temporarily
* This setting will modify the partition table temporarily, the setting will be lost after restart.
*
* @param table partition table
* @param len partition table length
*/
void fal_set_partition_table_temp(struct fal_partition *table, size_t len);
/**
* read data from partition
*
* @param part partition
* @param addr relative address for partition
* @param buf read buffer
* @param size read size
*
* @return >= 0: successful read data size
* -1: error
*/
int fal_partition_read(const struct fal_partition *part, uint32_t addr, uint8_t *buf, size_t size);
/**
* write data to partition
*
* @param part partition
* @param addr relative address for partition
* @param buf write buffer
* @param size write size
*
* @return >= 0: successful write data size
* -1: error
*/
int fal_partition_write(const struct fal_partition *part, uint32_t addr, const uint8_t *buf, size_t size);
/**
* erase partition data
*
* @param part partition
* @param addr relative address for partition
* @param size erase size
*
* @return >= 0: successful erased data size
* -1: error
*/
int fal_partition_erase(const struct fal_partition *part, uint32_t addr, size_t size);
/**
* erase partition all data
*
* @param part partition
*
* @return >= 0: successful erased data size
* -1: error
*/
int fal_partition_erase_all(const struct fal_partition *part);
/**
* print the partition table
*/
void fal_show_part_table(void);
/* =============== API provided to RT-Thread =============== */
/**
* create RT-Thread block device by specified partition
*
* @param parition_name partition name
*
* @return != NULL: created block device
* NULL: created failed
*/
struct rt_device *fal_blk_device_create(const char *parition_name);
#if defined(RT_USING_MTD_NOR)
/**
* create RT-Thread MTD NOR device by specified partition
*
* @param parition_name partition name
*
* @return != NULL: created MTD NOR device
* NULL: created failed
*/
struct rt_device *fal_mtd_nor_device_create(const char *parition_name);
#endif /* defined(RT_USING_MTD_NOR) */
/**
* create RT-Thread char device by specified partition
*
* @param parition_name partition name
*
* @return != NULL: created char device
* NULL: created failed
*/
struct rt_device *fal_char_device_create(const char *parition_name);
#endif /* _FAL_H_ */

View File

@@ -0,0 +1,23 @@
#ifndef _FAL_CFG_H_
#define _FAL_CFG_H_
#define FAL_PART_HAS_TABLE_CFG
// #define NOR_FLASH_DEV_NAME "spiflash"
/* ===================== Flash device Configuration ========================= */
extern const struct fal_flash_dev onchip_flash;
//extern struct fal_flash_dev spi_flash0;
/* flash device table */
#define FAL_FLASH_DEV_TABLE \
{ \
&onchip_flash \
}
/* ====================== Partition Configuration ========================== */
#define FAL_PART_TABLE \
{ \
{FAL_PART_MAGIC_WORD, "onchip_fdb", "onchip_flash", 0, 64*1024, 0} \
}
#endif /* _FAL_CFG_H_ */

View File

@@ -0,0 +1,162 @@
/*
* File : fal_def.h
* This file is part of FAL (Flash Abstraction Layer) package
* COPYRIGHT (C) 2006 - 2019, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2018-05-17 armink the first version
*/
#ifndef _FAL_DEF_H_
#define _FAL_DEF_H_
#include <stdint.h>
#include <stdio.h>
#include "common_api.h"
#define FAL_PRINTF DBG
#define FAL_SW_VERSION "0.5.0"
#ifndef FAL_MALLOC
#define FAL_MALLOC malloc
#endif
#ifndef FAL_CALLOC
#define FAL_CALLOC calloc
#endif
#ifndef FAL_REALLOC
#define FAL_REALLOC realloc
#endif
#ifndef FAL_FREE
#define FAL_FREE free
#endif
#ifndef FAL_DEBUG
#define FAL_DEBUG 0
#endif
#ifndef FAL_PRINTF
#ifdef RT_VER_NUM
/* for RT-Thread platform */
extern void rt_kprintf(const char *fmt, ...);
#define FAL_PRINTF rt_kprintf
#else
#define FAL_PRINTF printf
#endif /* RT_VER_NUM */
#endif /* FAL_PRINTF */
#if FAL_DEBUG
#ifdef assert
#undef assert
#endif
#define assert(EXPR) \
if (!(EXPR)) \
{ \
FAL_PRINTF("(%s) has assert failed at %s.\n", #EXPR, __FUNCTION__); \
while (1); \
}
/* debug level log */
#ifdef log_d
#undef log_d
#endif
#define log_d(...) FAL_PRINTF(__VA_ARGS__);FAL_PRINTF("\n")
#else
#ifdef assert
#undef assert
#endif
#define assert(EXPR) ((void)0);
/* debug level log */
#ifdef log_d
#undef log_d
#endif
#define log_d(...)
#endif /* FAL_DEBUG */
/* error level log */
#ifdef log_e
#undef log_e
#endif
#define log_e(...) FAL_PRINTF(__VA_ARGS__);
/* info level log */
#ifdef log_i
#undef log_i
#endif
#define log_i(...) FAL_PRINTF(__VA_ARGS__);
/* FAL flash and partition device name max length */
#ifndef FAL_DEV_NAME_MAX
#define FAL_DEV_NAME_MAX 24
#endif
struct fal_flash_dev
{
char name[FAL_DEV_NAME_MAX];
/* flash device start address and len */
uint32_t addr;
size_t len;
/* the block size in the flash for erase minimum granularity */
size_t blk_size;
struct
{
int (*init)(void);
int (*read)(long offset, uint8_t *buf, size_t size);
int (*write)(long offset, const uint8_t *buf, size_t size);
int (*erase)(long offset, size_t size);
} ops;
/* write minimum granularity, unit: bit.
1(nor flash)/ 8(stm32f4)/ 32(stm32f1)/ 64(stm32l4)
0 will not take effect. */
size_t write_gran;
};
typedef struct fal_flash_dev *fal_flash_dev_t;
/**
* FAL partition
*/
struct fal_partition
{
uint32_t magic_word;
/* partition name */
char name[FAL_DEV_NAME_MAX];
/* flash device name for partition */
char flash_name[FAL_DEV_NAME_MAX];
/* partition offset address on flash device */
long offset;
size_t len;
uint32_t reserved;
};
typedef struct fal_partition *fal_partition_t;
//#undef LUAT_LOG_TAG
#endif /* _FAL_DEF_H_ */

View File

@@ -0,0 +1,76 @@
/*
* File : fal.c
* This file is part of FAL (Flash Abstraction Layer) package
* COPYRIGHT (C) 2006 - 2018, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2018-05-17 armink the first version
*/
#include <fal.h>
static uint8_t init_ok = 0;
/**
* FAL (Flash Abstraction Layer) initialization.
* It will initialize all flash device and all flash partition.
*
* @return >= 0: partitions total number
*/
int fal_init(void)
{
extern int fal_flash_init(void);
extern int fal_partition_init(void);
int result;
/* initialize all flash device on FAL flash table */
result = fal_flash_init();
if (result < 0) {
goto __exit;
}
/* initialize all flash partition on FAL partition table */
result = fal_partition_init();
__exit:
if ((result > 0) && (!init_ok))
{
init_ok = 1;
log_i("Flash Abstraction Layer (V%s) initialize success.", FAL_SW_VERSION);
}
else if(result <= 0)
{
init_ok = 0;
log_e("Flash Abstraction Layer (V%s) initialize failed.", FAL_SW_VERSION);
}
return result;
}
/**
* Check if the FAL is initialized successfully
*
* @return 0: not init or init failed; 1: init success
*/
int fal_init_check(void)
{
return init_ok;
}

View File

@@ -0,0 +1,136 @@
#include "common_api.h"
#include "FreeRTOS.h"
#include "task.h"
#include "lfs_port.h"
#include "rng.h"
#include "lfs_util.h"
#include "flash_rt.h"
#include "mem_map.h"
#include DEBUG_LOG_HEADER_FILE
#include "osasys.h"
#include "plat_config.h"
#include "fal.h"
#define BLOCK_SIZE (4096)
#define TOTOL_SIZE (64*1024)
#define MEM_MODE 0
#if MEM_MODE
static uint8_t vbuff[TOTOL_SIZE];
static int (onchip_flash_init)(void) {
memset(vbuff, 0, TOTOL_SIZE);
return 0;
}
static int (onchip_flash_read)(long offset, uint8_t *buf, size_t size) {
if (size == 0)
return 0;
memcpy(buf, vbuff + offset, size);
return size;
}
static int (onchip_flash_write)(long offset, const uint8_t *buf, size_t size) {
if (size == 0)
return 0;
memcpy(vbuff + offset, buf, size);
return size;
}
static int (onchip_flash_erase)(long offset, size_t size) {
memset(vbuff + offset, 0, size);
return 0;
}
#else // MEM_MODE == 0
// static void mem_diff(const char* tag) {
// int ret = 0;
// uint8_t *tmp = malloc(BLOCK_SIZE);
// for (size_t offset = 0; offset < TOTOL_SIZE; offset+=BLOCK_SIZE)
// {
// ret = BSP_QSPI_Read_Safe((uint8_t *)tmp, (FLASH_FDB_REGION_START + offset), BLOCK_SIZE);
// if (ret != 0) {
// DBG("%s BSP_QSPI_Read_Safe ret %d %04X", tag, ret, offset);
// break;
// }
// if (memcmp(tmp, vbuff + offset, BLOCK_SIZE)) {
// DBG("%s Data NOT Match %04X", tag, offset);
// break;
// }
// }
// free(tmp);
// }
// extern uint8_t* QSPI_FLASH_ReadUUID(void);
static int (onchip_flash_init)(void) {
return 0;
}
static int (onchip_flash_read)(long offset, uint8_t *buf, size_t size) {
int ret = 0;
if (size == 0)
return 0;
ret = BSP_QSPI_Read_Safe((uint8_t *)buf, (FLASH_FDB_REGION_START + offset), size);
return ret == 0 ? size : -1; // 特别注意, 成功的时候, 要读取到的大小!!!
}
static int (onchip_flash_write)(long offset, const uint8_t *buf, size_t size) {
int ret = 0;
if (size == 0)
return 0;
// 注意, BSP_QSPI_Write_Safe 的buf不能是flash上的常量数据
// 写入flash时XIP会关闭, 导致buf值肯定读不到
// 下面的各种判断, 就是把常量数据拷贝到ram, 然后写入
uint8_t tmp_small[128];
uint8_t *tmp = NULL;
uint32_t addr = (uint32_t)buf;
if (size <= 128) {
// 对于较小的数据, 直接在栈内存里拷贝即可,不必判断
memcpy(tmp_small, buf, size);
ret = BSP_QSPI_Write_Safe((uint8_t *)tmp_small, (FLASH_FDB_REGION_START + offset), size);
}
else if (addr >= 0x00400000 && addr <= 0x00500000) {
// 数据已经处于ram, 可以直接写入
ret = BSP_QSPI_Write_Safe((uint8_t *)buf, (FLASH_FDB_REGION_START + offset), size);
}
else {
// 超过128字节的常量数据, 应该是不存在的吧, 下面的逻辑主要是防御代码.
tmp = malloc(size);
if (tmp == NULL) {
DBG("out of memory when malloc flash write buff");
return -1;
}
memcpy(tmp, buf, size);
ret = BSP_QSPI_Write_Safe((uint8_t *)tmp, (FLASH_FDB_REGION_START + offset), size);
free(tmp);
}
return ret == 0 ? size : -1; // 特别注意, 成功的时候, 要写入的大小!!!
}
static int (onchip_flash_erase)(long offset, size_t size) {
int ret = 0;
ret = BSP_QSPI_Erase_Safe((FLASH_FDB_REGION_START + offset), size);
return ret == 0 ? 0 : -1;
}
#endif // end of MEM_MODE
const struct fal_flash_dev onchip_flash = {
.name = "onchip_flash",
.len = TOTOL_SIZE,
.blk_size = BLOCK_SIZE,
.addr = 0,
.write_gran = 32,
.ops = {
.init = onchip_flash_init,
.read = onchip_flash_read,
.write = onchip_flash_write,
.erase = onchip_flash_erase
}
};

View File

@@ -0,0 +1,99 @@
/*
* File : fal_flash.c
* This file is part of FAL (Flash Abstraction Layer) package
* COPYRIGHT (C) 2006 - 2018, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2018-05-17 armink the first version
*/
#include <fal.h>
#include <string.h>
/* flash device table, must defined by user */
#if !defined(FAL_FLASH_DEV_TABLE)
#error "You must defined flash device table (FAL_FLASH_DEV_TABLE) on 'fal_cfg.h'"
#endif
static const struct fal_flash_dev * const device_table[] = FAL_FLASH_DEV_TABLE;
static const size_t device_table_len = sizeof(device_table) / sizeof(device_table[0]);
static uint8_t init_ok = 0;
/**
* Initialize all flash device on FAL flash table
*
* @return result
*/
int fal_flash_init(void)
{
size_t i;
#if FAL_DEBUG
const struct fal_flash_dev *dev;
#endif
if (init_ok)
{
return 0;
}
for (i = 0; i < device_table_len; i++)
{
assert(device_table[i]->ops.read);
assert(device_table[i]->ops.write);
assert(device_table[i]->ops.erase);
/* init flash device on flash table */
if (device_table[i]->ops.init)
{
device_table[i]->ops.init();
}
#if FAL_DEBUG
dev = device_table[i];
log_d("Flash device | %*.*s | addr: 0x%08lx | len: 0x%08x | blk_size: 0x%08x |initialized finish.",
FAL_DEV_NAME_MAX, FAL_DEV_NAME_MAX, dev->name, dev->addr, dev->len,
dev->blk_size);
#endif
}
init_ok = 1;
return 0;
}
/**
* find flash device by name
*
* @param name flash device name
*
* @return != NULL: flash device
* NULL: not found
*/
const struct fal_flash_dev *fal_flash_device_find(const char *name)
{
assert(init_ok);
assert(name);
size_t i;
for (i = 0; i < device_table_len; i++)
{
if (!strncmp(name, device_table[i]->name, FAL_DEV_NAME_MAX)) {
return device_table[i];
}
}
return NULL;
}

View File

@@ -0,0 +1,497 @@
/*
* File : fal_partition.c
* This file is part of FAL (Flash Abstraction Layer) package
* COPYRIGHT (C) 2006 - 2018, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2018-05-17 armink the first version
*/
#include <fal.h>
#include <string.h>
#include <stdlib.h>
/* partition magic word */
#define FAL_PART_MAGIC_WORD 0x45503130
#define FAL_PART_MAGIC_WORD_H 0x4550L
#define FAL_PART_MAGIC_WORD_L 0x3130L
#define FAL_PART_MAGIC_WROD 0x45503130
/**
* FAL partition table config has defined on 'fal_cfg.h'.
* When this option is disable, it will auto find the partition table on a specified location in flash partition.
*/
#ifdef FAL_PART_HAS_TABLE_CFG
/* check partition table definition */
#if !defined(FAL_PART_TABLE)
#error "You must defined FAL_PART_TABLE on 'fal_cfg.h'"
#endif
#ifdef __CC_ARM /* ARM Compiler */
#define SECTION(x) __attribute__((section(x)))
#define USED __attribute__((used))
#elif defined (__IAR_SYSTEMS_ICC__) /* for IAR Compiler */
#define SECTION(x) @ x
#define USED __root
#elif defined (__GNUC__) /* GNU GCC Compiler */
#define SECTION(x) __attribute__((section(x)))
#define USED __attribute__((used))
#else
#error not supported tool chain
#endif /* __CC_ARM */
//USED static const struct fal_partition partition_table_def[] SECTION("FalPartTable") = FAL_PART_TABLE;
static const struct fal_partition partition_table_def[] = FAL_PART_TABLE;
static const struct fal_partition *partition_table = NULL;
#else /* FAL_PART_HAS_TABLE_CFG */
#if !defined(FAL_PART_TABLE_FLASH_DEV_NAME)
#error "You must defined FAL_PART_TABLE_FLASH_DEV_NAME on 'fal_cfg.h'"
#endif
/* check partition table end offset address definition */
#if !defined(FAL_PART_TABLE_END_OFFSET)
#error "You must defined FAL_PART_TABLE_END_OFFSET on 'fal_cfg.h'"
#endif
static struct fal_partition *partition_table = NULL;
#endif /* FAL_PART_HAS_TABLE_CFG */
static uint8_t init_ok = 0;
static size_t partition_table_len = 0;
/**
* print the partition table
*/
void fal_show_part_table(void)
{
char *item1 = "name", *item2 = "flash_dev";
size_t i, part_name_max = strlen(item1), flash_dev_name_max = strlen(item2);
const struct fal_partition *part;
if (partition_table_len)
{
for (i = 0; i < partition_table_len; i++)
{
part = &partition_table[i];
if (strlen(part->name) > part_name_max)
{
part_name_max = strlen(part->name);
}
if (strlen(part->flash_name) > flash_dev_name_max)
{
flash_dev_name_max = strlen(part->flash_name);
}
}
}
log_i("==================== FAL partition table ====================");
log_i("| %-*.*s | %-*.*s | offset | length |", part_name_max, FAL_DEV_NAME_MAX, item1, flash_dev_name_max,
FAL_DEV_NAME_MAX, item2);
log_i("-------------------------------------------------------------");
for (i = 0; i < partition_table_len; i++)
{
#ifdef FAL_PART_HAS_TABLE_CFG
part = &partition_table[i];
#else
part = &partition_table[partition_table_len - i - 1];
#endif
log_i("| %-*.*s | %-*.*s | 0x%08lx | 0x%08x |", part_name_max, FAL_DEV_NAME_MAX, part->name, flash_dev_name_max,
FAL_DEV_NAME_MAX, part->flash_name, part->offset, part->len);
}
log_i("=============================================================");
}
/**
* Initialize all flash partition on FAL partition table
*
* @return partitions total number
*/
int fal_partition_init(void)
{
size_t i;
const struct fal_flash_dev *flash_dev = NULL;
if (init_ok)
{
return partition_table_len;
}
#ifdef FAL_PART_HAS_TABLE_CFG
partition_table = &partition_table_def[0];
partition_table_len = sizeof(partition_table_def) / sizeof(partition_table_def[0]);
#else
/* load partition table from the end address FAL_PART_TABLE_END_OFFSET, error return 0 */
long part_table_offset = FAL_PART_TABLE_END_OFFSET;
size_t table_num = 0, table_item_size = 0;
uint8_t part_table_find_ok = 0;
uint32_t read_magic_word;
fal_partition_t new_part = NULL;
flash_dev = fal_flash_device_find(FAL_PART_TABLE_FLASH_DEV_NAME);
if (flash_dev == NULL)
{
log_e("Initialize failed! Flash device (%s) NOT found.", FAL_PART_TABLE_FLASH_DEV_NAME);
goto _exit;
}
/* check partition table offset address */
if (part_table_offset < 0 || part_table_offset >= (long) flash_dev->len)
{
log_e("Setting partition table end offset address(%ld) out of flash bound(<%d).", part_table_offset, flash_dev->len);
goto _exit;
}
table_item_size = sizeof(struct fal_partition);
new_part = (fal_partition_t)FAL_MALLOC(table_item_size);
if (new_part == NULL)
{
log_e("Initialize failed! No memory for table buffer.");
goto _exit;
}
/* find partition table location */
{
uint8_t read_buf[64];
part_table_offset -= sizeof(read_buf);
while (part_table_offset >= 0)
{
if (flash_dev->ops.read(part_table_offset, read_buf, sizeof(read_buf)) > 0)
{
/* find magic word in read buf */
for (i = 0; i < sizeof(read_buf) - sizeof(read_magic_word) + 1; i++)
{
read_magic_word = read_buf[0 + i] + (read_buf[1 + i] << 8) + (read_buf[2 + i] << 16) + (read_buf[3 + i] << 24);
if (read_magic_word == ((FAL_PART_MAGIC_WORD_H << 16) + FAL_PART_MAGIC_WORD_L))
{
part_table_find_ok = 1;
part_table_offset += i;
log_d("Find the partition table on '%s' offset @0x%08lx.", FAL_PART_TABLE_FLASH_DEV_NAME,
part_table_offset);
break;
}
}
}
else
{
/* read failed */
break;
}
if (part_table_find_ok)
{
break;
}
else
{
/* calculate next read buf position */
if (part_table_offset >= (long)sizeof(read_buf))
{
part_table_offset -= sizeof(read_buf);
part_table_offset += (sizeof(read_magic_word) - 1);
}
else if (part_table_offset != 0)
{
part_table_offset = 0;
}
else
{
/* find failed */
break;
}
}
}
}
/* load partition table */
while (part_table_find_ok)
{
memset(new_part, 0x00, table_num);
if (flash_dev->ops.read(part_table_offset - table_item_size * (table_num), (uint8_t *) new_part,
table_item_size) < 0)
{
log_e("Initialize failed! Flash device (%s) read error!", flash_dev->name);
table_num = 0;
break;
}
if (new_part->magic_word != ((FAL_PART_MAGIC_WORD_H << 16) + FAL_PART_MAGIC_WORD_L))
{
break;
}
partition_table = (fal_partition_t) FAL_REALLOC(partition_table, table_item_size * (table_num + 1));
if (partition_table == NULL)
{
log_e("Initialize failed! No memory for partition table");
table_num = 0;
break;
}
memcpy(partition_table + table_num, new_part, table_item_size);
table_num++;
};
if (table_num == 0)
{
log_e("Partition table NOT found on flash: %s (len: %d) from offset: 0x%08x.", FAL_PART_TABLE_FLASH_DEV_NAME,
FAL_DEV_NAME_MAX, FAL_PART_TABLE_END_OFFSET);
goto _exit;
}
else
{
partition_table_len = table_num;
}
#endif /* FAL_PART_HAS_TABLE_CFG */
/* check the partition table device exists */
for (i = 0; i < partition_table_len; i++)
{
flash_dev = fal_flash_device_find(partition_table[i].flash_name);
if (flash_dev == NULL)
{
log_d("Warning: Do NOT found the flash device(%s).", partition_table[i].flash_name);
continue;
}
if (partition_table[i].offset >= (long)flash_dev->len)
{
log_e("Initialize failed! Partition(%s) offset address(%ld) out of flash bound(<%d).",
partition_table[i].name, partition_table[i].offset, flash_dev->len);
partition_table_len = 0;
goto _exit;
}
}
init_ok = 1;
_exit:
#if FAL_DEBUG
fal_show_part_table();
#endif
#ifndef FAL_PART_HAS_TABLE_CFG
if (new_part)
{
FAL_FREE(new_part);
}
#endif /* !FAL_PART_HAS_TABLE_CFG */
return partition_table_len;
}
/**
* find the partition by name
*
* @param name partition name
*
* @return != NULL: partition
* NULL: not found
*/
const struct fal_partition *fal_partition_find(const char *name)
{
assert(init_ok);
size_t i;
for (i = 0; i < partition_table_len; i++)
{
if (!strcmp(name, partition_table[i].name))
{
return &partition_table[i];
}
}
return NULL;
}
/**
* get the partition table
*
* @param len return the partition table length
*
* @return partition table
*/
const struct fal_partition *fal_get_partition_table(size_t *len)
{
assert(init_ok);
assert(len);
*len = partition_table_len;
return partition_table;
}
/**
* set partition table temporarily
* This setting will modify the partition table temporarily, the setting will be lost after restart.
*
* @param table partition table
* @param len partition table length
*/
void fal_set_partition_table_temp(struct fal_partition *table, size_t len)
{
assert(init_ok);
assert(table);
partition_table_len = len;
partition_table = table;
}
/**
* read data from partition
*
* @param part partition
* @param addr relative address for partition
* @param buf read buffer
* @param size read size
*
* @return >= 0: successful read data size
* -1: error
*/
int fal_partition_read(const struct fal_partition *part, uint32_t addr, uint8_t *buf, size_t size)
{
int ret = 0;
const struct fal_flash_dev *flash_dev = NULL;
assert(part);
assert(buf);
if (addr + size > part->len)
{
log_e("Partition read error! Partition address out of bound.");
return -1;
}
flash_dev = fal_flash_device_find(part->flash_name);
if (flash_dev == NULL)
{
log_e("Partition read error! Don't found flash device(%s) of the partition(%s).", part->flash_name, part->name);
return -1;
}
ret = flash_dev->ops.read(part->offset + addr, buf, size);
if (ret < 0)
{
log_e("Partition read error! Flash device(%s) read error!", part->flash_name);
}
return ret;
}
/**
* write data to partition
*
* @param part partition
* @param addr relative address for partition
* @param buf write buffer
* @param size write size
*
* @return >= 0: successful write data size
* -1: error
*/
int fal_partition_write(const struct fal_partition *part, uint32_t addr, const uint8_t *buf, size_t size)
{
int ret = 0;
const struct fal_flash_dev *flash_dev = NULL;
assert(part);
assert(buf);
if (size == 0)
return 0;
if (addr + size > part->len)
{
log_e("Partition write error! Partition address out of bound. %08X %04X", addr, size);
return -1;
}
flash_dev = fal_flash_device_find(part->flash_name);
if (flash_dev == NULL)
{
log_e("Partition write error! Don't found flash device(%s) of the partition(%s).", part->flash_name, part->name);
return -1;
}
ret = flash_dev->ops.write(part->offset + addr, buf, size);
if (ret < 0)
{
log_e("Partition write error! Flash device(%s) write error! %08X %04X ret %d", part->flash_name, addr, size, ret);
}
return ret;
}
/**
* erase partition data
*
* @param part partition
* @param addr relative address for partition
* @param size erase size
*
* @return >= 0: successful erased data size
* -1: error
*/
int fal_partition_erase(const struct fal_partition *part, uint32_t addr, size_t size)
{
int ret = 0;
const struct fal_flash_dev *flash_dev = NULL;
assert(part);
if (addr + size > part->len)
{
log_e("Partition erase error! Partition address out of bound.");
return -1;
}
flash_dev = fal_flash_device_find(part->flash_name);
if (flash_dev == NULL)
{
log_e("Partition erase error! Don't found flash device(%s) of the partition(%s).", part->flash_name, part->name);
return -1;
}
ret = flash_dev->ops.erase(part->offset + addr, size);
if (ret < 0)
{
log_e("Partition erase error! Flash device(%s) erase error!", part->flash_name);
}
return ret;
}
/**
* erase partition all data
*
* @param part partition
*
* @return >= 0: successful erased data size
* -1: error
*/
int fal_partition_erase_all(const struct fal_partition *part)
{
return fal_partition_erase(part, 0, part->len);
}