添加智能灯固件代码

This commit is contained in:
kerwincui
2021-07-13 17:14:51 +08:00
parent 332f74dd17
commit ecc0b91b8b
2568 changed files with 229441 additions and 0 deletions

View File

@@ -0,0 +1,6 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(uart_echo)

View File

@@ -0,0 +1,9 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := uart_echo
include $(IDF_PATH)/make/project.mk

View File

@@ -0,0 +1,63 @@
# UART Echo Example
(See the README.md file in the upper level 'examples' directory for more information about examples.)
This example demonstrates how to utilize UART interfaces of ESP32 by echoing back to the sender any data received on
UART1.
## How to use example
### Hardware Required
The example can be run on any ESP32 development board connected to a PC with a single USB cable for flashing and
monitoring. The external interface should have 3.3V outputs. You may use e.g. 3.3V compatible USB-to-Serial dongle.
### Setup the Hardware
Connect the external serial interface to the ESP32 board as follows.
| ESP32 Interface | #define | ESP32 Pin | External UART Pin |
| --- | --- | --- | --- |
| Transmit Data (TxD) | ECHO_TEST_TXD | GPIO4 | RxD |
| Receive Data (RxD) | ECHO_TEST_RXD | GPIO5 | TxD |
| Ground | n/a | GND | GND |
Optionally, you can set-up and use a serial interface that has RTS and CTS signals in order to verify that the
hardware control flow works. Connect the extra signals according to the following table, configure both extra pins in
the example code by replacing existing `UART_PIN_NO_CHANGE` macros with the appropriate pin numbers and configure
UART1 driver to use the hardware flow control by setting `.flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS` and adding
`.rx_flow_ctrl_thresh = 122`.
| ESP32 Interface | #define | ESP32 Pin | External UART Pin |
| --- | --- | --- | --- |
| Request to Send (RTS) | ECHO_TEST_RTS | GPIO18 | CTS |
| Clear to Send (CTS) | ECHO_TEST_CTS | GPIO19 | RTS |
### Configure the project
```
idf.py menuconfig
```
### Build and Flash
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example Output
Type some characters in the terminal connected to the external serial interface. As result you should see echo in the
terminal which is used for flashing and monitoring. You can verify if the echo indeed comes from ESP32 by
disconnecting either `TxD` or `RxD` pin: no characters will appear when typing.
## Troubleshooting
You are not supposed to see the echo in the terminal which is used for flashing and monitoring, but in the other one
which is connected to UART1.

View File

@@ -0,0 +1,2 @@
idf_component_register(SRCS "uart_echo_example_main.c"
INCLUDE_DIRS ".")

View File

@@ -0,0 +1,3 @@
#
# Main Makefile. This is basically the same as a component makefile.
#

View File

@@ -0,0 +1,64 @@
/* UART Echo Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/uart.h"
#include "driver/gpio.h"
/**
* This is an example which echos any data it receives on UART1 back to the sender,
* with hardware flow control turned off. It does not use UART driver event queue.
*
* - Port: UART1
* - Receive (Rx) buffer: on
* - Transmit (Tx) buffer: off
* - Flow control: off
* - Event queue: off
* - Pin assignment: see defines below
*/
#define ECHO_TEST_TXD (GPIO_NUM_4)
#define ECHO_TEST_RXD (GPIO_NUM_5)
#define ECHO_TEST_RTS (UART_PIN_NO_CHANGE)
#define ECHO_TEST_CTS (UART_PIN_NO_CHANGE)
#define BUF_SIZE (1024)
static void echo_task(void *arg)
{
/* Configure parameters of an UART driver,
* communication pins and install the driver */
uart_config_t uart_config = {
.baud_rate = 115200,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.source_clk = UART_SCLK_APB,
};
uart_driver_install(UART_NUM_1, BUF_SIZE * 2, 0, 0, NULL, 0);
uart_param_config(UART_NUM_1, &uart_config);
uart_set_pin(UART_NUM_1, ECHO_TEST_TXD, ECHO_TEST_RXD, ECHO_TEST_RTS, ECHO_TEST_CTS);
// Configure a temporary buffer for the incoming data
uint8_t *data = (uint8_t *) malloc(BUF_SIZE);
while (1) {
// Read data from the UART
int len = uart_read_bytes(UART_NUM_1, data, BUF_SIZE, 20 / portTICK_RATE_MS);
// Write data back to the UART
uart_write_bytes(UART_NUM_1, (const char *) data, len);
}
}
void app_main(void)
{
xTaskCreate(echo_task, "uart_echo_task", 1024, NULL, 10, NULL);
}