添加智能灯固件代码

This commit is contained in:
kerwincui
2021-07-13 17:14:51 +08:00
parent 332f74dd17
commit ecc0b91b8b
2568 changed files with 229441 additions and 0 deletions

View File

@@ -0,0 +1,7 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
# external SPI flash driver not currently supported for ESP32-S2
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(ext_flash_fatfs)

View File

@@ -0,0 +1,9 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := ext_flash_fatfs
include $(IDF_PATH)/make/project.mk

View File

@@ -0,0 +1,71 @@
| Supported Targets | ESP32 |
| ----------------- | ----- |
# FAT FS on External Flash example
(See the README.md file in the upper level 'examples' directory for more information about examples.)
This example is similar to the [wear levelling](../wear_levelling/README.md) example, except that it uses an external SPI Flash chip. This can be useful if you need to add more storage to a module with only 4 MB flash size.
The flow of the example is as follows:
1. Initialize the SPI bus and configure the pins. In this example, VSPI peripheral is used. The pins chosen in this example correspond to IOMUX pins for the VSPI peripheral. If the pin assignment is changed, SPI driver will instead connect the peripheral to the pins using the GPIO Matrix.
2. Initialize the SPI flash chip. This involves creating a run-time object which describes the flash chip (`esp_flash_t`), probing the flash chip, and configuring it for the selected read mode. By default this example uses DIO mode, which only requires 4 pins (MOSI, MISO, SCLK, CS). For modes such as QIO and QOUT, additional pins must be connected.
3. Register the entire area of the Flash chip as a *partition* (`esp_partition_t`). This allows other components (FATFS, SPIFFS, NVS, etc) to use the storage provided by the external flash chip.
4. Do some read and write operations using C standard library functions: create a file, write to it, open it for reading, print the contents to the console.
## How to use example
### Hardware required
This example needs an SPI NOR Flash chip connected to the ESP32. The SPI Flash chip must have 3.3V logic levels. The example has been tested with Winbond W25Q32 SPI Flash chip.
Use the following pin assignments:
ESP32 pin | SPI bus signal | SPI Flash pin
--------------|----------------|----------------
GPIO23 | MOSI | DI
GPIO19 | MISO | DO
GPIO18 | SCLK | CLK
GPIO5 | CS | CMD
unconnected | | WP
unconnected | | HOLD
GND | | GND
VCC | | VCC
### Build and flash
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(Replace PORT with serial port name.)
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example output
Here is a typical example console output.
```
I (328) example: Initializing external SPI Flash
I (338) example: Pin assignments:
I (338) example: MOSI: 23 MISO: 19 SCLK: 18 CS: 5
I (348) spi_flash: detected chip: generic
I (348) spi_flash: flash io: dio
I (348) example: Initialized external Flash, size=4096 KB, ID=0xef4016
I (358) example: Adding external Flash as a partition, label="storage", size=4096 KB
I (368) example: Mounting FAT filesystem
I (378) example: FAT FS: 4024 kB total, 4020 kB free
I (378) example: Opening file
I (958) example: File written
I (958) example: Reading file
I (958) example: Read from file: 'Written using ESP-IDF v4.0-dev-1301-g0a1160468'
```

View File

@@ -0,0 +1,19 @@
from __future__ import print_function
import ttfw_idf
@ttfw_idf.idf_example_test(env_tag='Example_ExtFlash')
def test_examples_storage_ext_flash_fatfs(env, extra_data):
dut = env.get_dut('ext_flash_fatfs', 'examples/storage/ext_flash_fatfs', dut_class=ttfw_idf.ESP32DUT)
dut.start_app()
dut.expect('Initialized external Flash')
dut.expect('partition \'nvs\'')
dut.expect('partition \'storage\'')
dut.expect('File written')
dut.expect('Read from file: \'Written using ESP-IDF')
if __name__ == '__main__':
test_examples_storage_ext_flash_fatfs()

View File

@@ -0,0 +1 @@
idf_component_register(SRCS "ext_flash_fatfs_example_main.c")

View File

@@ -0,0 +1,4 @@
#
# "main" pseudo-component makefile.
#
# (Uses default behaviour of compiling all source files in directory, adding 'include' to include path.)

View File

@@ -0,0 +1,192 @@
/* Example of FAT filesystem on external Flash.
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
This sample shows how to store files inside a FAT filesystem.
FAT filesystem is stored in a partition inside SPI flash, using the
flash wear levelling library.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "esp_flash.h"
#include "esp_flash_spi_init.h"
#include "esp_partition.h"
#include "esp_vfs.h"
#include "esp_vfs_fat.h"
#include "esp_system.h"
static const char *TAG = "example";
// Handle of the wear levelling library instance
static wl_handle_t s_wl_handle = WL_INVALID_HANDLE;
// Mount path for the partition
const char *base_path = "/extflash";
static esp_flash_t* example_init_ext_flash(void);
static const esp_partition_t* example_add_partition(esp_flash_t* ext_flash, const char* partition_label);
static void example_list_data_partitions(void);
static bool example_mount_fatfs(const char* partition_label);
static void example_get_fatfs_usage(size_t* out_total_bytes, size_t* out_free_bytes);
void app_main(void)
{
// Set up SPI bus and initialize the external SPI Flash chip
esp_flash_t* flash = example_init_ext_flash();
if (flash == NULL) {
return;
}
// Add the entire external flash chip as a partition
const char *partition_label = "storage";
example_add_partition(flash, partition_label);
// List the available partitions
example_list_data_partitions();
// Initialize FAT FS in the partition
if (!example_mount_fatfs(partition_label)) {
return;
}
// Print FAT FS size information
size_t bytes_total, bytes_free;
example_get_fatfs_usage(&bytes_total, &bytes_free);
ESP_LOGI(TAG, "FAT FS: %d kB total, %d kB free", bytes_total / 1024, bytes_free / 1024);
// Create a file in FAT FS
ESP_LOGI(TAG, "Opening file");
FILE *f = fopen("/extflash/hello.txt", "wb");
if (f == NULL) {
ESP_LOGE(TAG, "Failed to open file for writing");
return;
}
fprintf(f, "Written using ESP-IDF %s\n", esp_get_idf_version());
fclose(f);
ESP_LOGI(TAG, "File written");
// Open file for reading
ESP_LOGI(TAG, "Reading file");
f = fopen("/extflash/hello.txt", "rb");
if (f == NULL) {
ESP_LOGE(TAG, "Failed to open file for reading");
return;
}
char line[128];
fgets(line, sizeof(line), f);
fclose(f);
// strip newline
char *pos = strchr(line, '\n');
if (pos) {
*pos = '\0';
}
ESP_LOGI(TAG, "Read from file: '%s'", line);
}
static esp_flash_t* example_init_ext_flash(void)
{
const spi_bus_config_t bus_config = {
.mosi_io_num = VSPI_IOMUX_PIN_NUM_MOSI,
.miso_io_num = VSPI_IOMUX_PIN_NUM_MISO,
.sclk_io_num = VSPI_IOMUX_PIN_NUM_CLK,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
};
const esp_flash_spi_device_config_t device_config = {
.host_id = VSPI_HOST,
.cs_id = 0,
.cs_io_num = VSPI_IOMUX_PIN_NUM_CS,
.io_mode = SPI_FLASH_DIO,
.speed = ESP_FLASH_40MHZ
};
ESP_LOGI(TAG, "Initializing external SPI Flash");
ESP_LOGI(TAG, "Pin assignments:");
ESP_LOGI(TAG, "MOSI: %2d MISO: %2d SCLK: %2d CS: %2d",
bus_config.mosi_io_num, bus_config.miso_io_num,
bus_config.sclk_io_num, device_config.cs_io_num
);
// Initialize the SPI bus
ESP_ERROR_CHECK(spi_bus_initialize(VSPI_HOST, &bus_config, 1));
// Add device to the SPI bus
esp_flash_t* ext_flash;
ESP_ERROR_CHECK(spi_bus_add_flash_device(&ext_flash, &device_config));
// Probe the Flash chip and initialize it
esp_err_t err = esp_flash_init(ext_flash);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to initialize external Flash: %s (0x%x)", esp_err_to_name(err), err);
return NULL;
}
// Print out the ID and size
uint32_t id;
ESP_ERROR_CHECK(esp_flash_read_id(ext_flash, &id));
ESP_LOGI(TAG, "Initialized external Flash, size=%d KB, ID=0x%x", ext_flash->size / 1024, id);
return ext_flash;
}
static const esp_partition_t* example_add_partition(esp_flash_t* ext_flash, const char* partition_label)
{
ESP_LOGI(TAG, "Adding external Flash as a partition, label=\"%s\", size=%d KB", partition_label, ext_flash->size / 1024);
const esp_partition_t* fat_partition;
ESP_ERROR_CHECK(esp_partition_register_external(ext_flash, 0, ext_flash->size, partition_label, ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_FAT, &fat_partition));
return fat_partition;
}
static void example_list_data_partitions(void)
{
ESP_LOGI(TAG, "Listing data partitions:");
esp_partition_iterator_t it = esp_partition_find(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, NULL);
for (; it != NULL; it = esp_partition_next(it)) {
const esp_partition_t *part = esp_partition_get(it);
ESP_LOGI(TAG, "- partition '%s', subtype %d, offset 0x%x, size %d kB",
part->label, part->subtype, part->address, part->size / 1024);
}
esp_partition_iterator_release(it);
}
static bool example_mount_fatfs(const char* partition_label)
{
ESP_LOGI(TAG, "Mounting FAT filesystem");
const esp_vfs_fat_mount_config_t mount_config = {
.max_files = 4,
.format_if_mount_failed = true,
.allocation_unit_size = CONFIG_WL_SECTOR_SIZE
};
esp_err_t err = esp_vfs_fat_spiflash_mount(base_path, partition_label, &mount_config, &s_wl_handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to mount FATFS (%s)", esp_err_to_name(err));
return false;
}
return true;
}
static void example_get_fatfs_usage(size_t* out_total_bytes, size_t* out_free_bytes)
{
FATFS *fs;
size_t free_clusters;
int res = f_getfree("0:", &free_clusters, &fs);
assert(res == FR_OK);
size_t total_sectors = (fs->n_fatent - 2) * fs->csize;
size_t free_sectors = free_clusters * fs->csize;
// assuming the total size is < 4GiB, should be true for SPI Flash
if (out_total_bytes != NULL) {
*out_total_bytes = total_sectors * fs->ssize;
}
if (out_free_bytes != NULL) {
*out_free_bytes = free_sectors * fs->ssize;
}
}